cooling channels
Recently Published Documents


TOTAL DOCUMENTS

678
(FIVE YEARS 179)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
pp. 1-32
Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract A wide variety of pin-fins have been used to enhance heat transfer in internal cooling channels. However, due to their large blockage in the flow direction, they result in an undesirable high pressure drop. This experimental study aims to reduce pressure drop while increasing the heat transfer surface area by utilizing strip-fins in converging internal cooling channels. The channel is designed with a trapezoidal cross-section, converges in both transverse and longitudinal directions, and is also skewed β=120° with respect to the direction of rotation in order to model a trailing edge cooling channel. Only the leading and trailing surfaces of the channel are instrumented, and each surface is divided into eighteen isolated copper plates to measure the regionally averaged heat transfer coefficient. Utilizing pressure taps at the inlet and outlet of the channel, the pressure drop is obtained. Three staggered arrays of strip-fins are investigated: one full height configuration and two partial fin height arrangements (Sz=2mm and 1mm). In all cases, the strip fins are 2mm wide (W) and 10mm long (Lf ) in the flow direction. The fins are spaced such that Sy/Lf = 1 in the streamwise direction. However, due to the convergence, the spanwise spacing, Sx/W, was varied from 8 to 6.2 along the channel. The rotation number of the channel varied up to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300rpm. It is found that


2022 ◽  
Author(s):  
William A. Mullin ◽  
Keaton Melendez ◽  
Benjamin Stefanko ◽  
Aaron Bell ◽  
Grant Davis ◽  
...  

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 181
Author(s):  
Seo-Hyeon Oh ◽  
Jong-Wook Ha ◽  
Keun Park

In injection molding, cooling channels are usually manufactured with a straight shape, and thus have low cooling efficiency for a curved mold. Recently, additive manufacturing (AM) was used to fabricate conformal cooling channels that could maintain a consistent distance from the curved surface of the mold. Because this conformal cooling channel was designed to obtain a uniform temperature on the mold surface, it could not efficiently cool locally heated regions (hot spots). This study developed an adaptive conformal cooling method that supports localized-yet-uniform cooling for the heated region by employing micro-cellular cooling structures instead of the typical cooling channels. An injection molding simulation was conducted to predict the locally heated region, and a mold core was designed to include a triply periodic minimal surface (TPMS) structure near the heated region. Two biomimetic TPMS structures, Schwarz-diamond and gyroid structures, were designed and fabricated using a digital light processing (DLP)-type polymer AM process. Various design parameters of the TPMS structures, the TPMS shapes and base coordinates, were investigated in terms of the conformal cooling performance. The mold core with the best TPMS design was fabricated using a powder-bed fusion (PBF)-type metal AM process, and injection molding experiments were conducted using the additively manufactured mold core. The developed mold with TPMS cooling achieved a 15 s cooling time to satisfy the dimensional tolerance, which corresponds to a 40% reduction in comparison with that of the conventional cooling (25 s).


2021 ◽  
Author(s):  
Hugo Miguel Silva ◽  
Hugo Luís Rodrigues ◽  
João Tiago Noversa ◽  
Leandro Fernandes ◽  
António José Pontes

Abstract The fabrication of conformal cooling channels (CCC's) has become easier and more affordable due to recent developments in additive manufacturing. The use of CCC's allows better cooling performance than the conventional (straight drilled) channels, in the injection molding process. The main reason for this is that the CCC's can follow the paths of the molded geometry, whereas the conventional channels made by conventional machining techniques are not able to do so. CCCs can help to reduce thermal strains and warpage by reducing cycle time and allowing for a more uniform temperature distribution. CCC, on the other hand, has a more complicated design procedure than traditional channels. Computer-Aided Engineering (CAE) simulations) are crucial to achieve an effective and cost-efficient design. This article focuses the comparison of two ANSYS modules, for results validation. The relative error between ANSYS Workbench and ANSYS Mechanical APDL varied from close to 0 to below 1 %, in the case of maximum temperature Tmax, and between 1.5 to 5.5 approximately, for the average temperature Tavg. It can be concluded that, for the most refined mesh studied, the results are close by the two modules. Therefore, the ANSYS module to work on should be used based on the purpose of the work, as well as the complexity of the CAD geometry.


Instruments ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 35
Author(s):  
Toms Torims ◽  
Guntis Pikurs ◽  
Samira Gruber ◽  
Maurizio Vretenar ◽  
Andris Ratkus ◽  
...  

Continuous developments in additive manufacturing (AM) technology are opening up opportunities in novel machining, and improving design alternatives for modern particle accelerator components. One of the most critical, complex, and delicate accelerator elements to manufacture and assemble is the radio frequency quadrupole (RFQ) linear accelerator, which is used as an injector for all large modern proton and ion accelerator systems. For this reason, the RFQ has been selected by a wide European collaboration participating in the AM developments of the I.FAST (Innovation Fostering in Accelerator Science and Technology) Horizon 2020 project. The RFQ is as an excellent candidate to show how sophisticated pure copper accelerator components can be manufactured by AM and how their functionalities can be boosted by this evolving technology. To show the feasibility of the AM process, a prototype RFQ section has been designed, corresponding to one-quarter of a 750 MHz 4-vane RFQ, which was optimised for production with state-of-the-art laser powder bed fusion (L-PBF) technology, and then manufactured in pure copper. To the best of the authors’ knowledge, this is the first RFQ section manufactured in the world by AM. Subsequently, geometrical precision and surface roughness of the prototype were measured. The results obtained are encouraging and confirm the feasibility of AM manufactured high-tech accelerator components. It has been also confirmed that the RFQ geometry, particularly the critical electrode modulation and the complex cooling channels, can be successfully realised thanks to the opportunities provided by the AM technology. Further prototypes will aim to improve surface roughness and to test vacuum properties. In parallel, laboratory measurements will start to test and improve the voltage holding properties of AM manufactured electrode samples.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7258
Author(s):  
Chil-Chyuan Kuo ◽  
Shao-Xuan Qiu

Direct metal printing is a promising technique for manufacturing injection molds with complex conformal cooling channels from maraging steel powder, which is widely applied in automotive or aerospace industries. However, two major disadvantages of direct metal printing are the narrow process window and length of time consumed. The fabrication of high-density injection molds is frequently applied to prevent coolant leakage during the cooling stage. In this study, we propose a simple method of reducing coolant leakage for a direct-metal-printed injection mold with conformal cooling channels by combining injection mold fabrication with general process parameters, as well as solution and aging treatment (SAT). This study comprehensively investigates the microstructural evolution of the injection mold after SAT using field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. We found that the surface hardness of the injection mold was enhanced from HV 189 to HV 546 as the Ni-Mo precipitates increased from 12.8 to 18.5%. The size of the pores was reduced significantly due to iron oxide precipitates because the relative density of the injection mold increased from 99.18 to 99.72%. The total production time of the wax injection mold without coolant leakage during the cooling stage was only 62% that of the production time of the wax injection mold fabricated with high-density process parameters. A significant savings of up to 46% of the production cost of the injection mold was obtained.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7249
Author(s):  
Maria C. Carrupt ◽  
Ana P. Piedade

In the 21st century, a great percentage of the plastic industry production is associated with both injection molding and extrusion processes. Manufactured plastic components/parts are used in several industry sectors, where the automotive and aeronautic stand out. In the injection process cycle, the cooling step represents 60% to 80% of the total injection process time, and it is used to estimate the production capabilities and costs. Therefore, efforts have been focused on obtaining more efficient cooling systems, seeking the best relationship between the shape, the quantity, and the distribution of the cooling channels into the injection molds. Concomitantly, the surface coating of the mold cavity also assumes great importance as it can provide increased hardness and a more straightforward demolding process. These aspects contribute to the decrease of rejected parts due to surface defects. However, the effect of the coated cavity on the heat transfer and, consequently, on the time of the injection cycle is not often addressed. This paper reviews the effects of the materials and surface coatings of molds cavity on the filling and cooling of the injection molding cycle. It shows how the design of cooling channels affects the cooling rates and warpage for molded parts. It also addresses how the surface coating influence the mold filling patterns and mold cooling. This review shows, more specifically, the influence of the coating process on the cooling step of the injection cycle and, consequently, in the productivity of the process.


2021 ◽  
pp. 096739112110598
Author(s):  
Gorka Díez-Barcenilla ◽  
José L Gómez-Alonso ◽  
Koldo Gondra ◽  
Ester Zuza

The technology of epoxy tooling, at present under continuous development, is used for the rapid manufacture of cost-effective tools for small batch production. It is a valid alternative with no need for expensive investment in metallic moulds for the development of new products. Current investigations are focused on improvements to the production system, improved tool performance, the cost reduction of moulds and tool manufacturing sustainability. In this paper, both the advantages and the disadvantages of epoxy tooling in injection moulding, wax injection, metal stamping and hot embossing are compared with conventional techniques. Following a brief introduction of rapid tooling technologies, the latest advances of epoxy tooling and their implementation in different manufacturing processes are all analysed. These developments refer to the production of new ad-hoc epoxy composites, increased productivity using conformal cooling channels, the reduction of the tooling manufacturing costs through waste reuse and the emerging industry 4.0 technologies for smart manufacturing and tooling. The main objective is to identify both the challenges facing epoxy tooling techniques and future research directions.


2021 ◽  
Author(s):  
Hugo Miguel Silva ◽  
João Tiago Noversa ◽  
Leandro Fernandes ◽  
Hugo Luís Rodrigues ◽  
António José Pontes

Abstract Fabricating conformal cooling channels (CCCs) has become easier and more cost-effective because to recent advances in additive manufacturing. CCCs provide better cooling performance in the injection molding process than regular (straight drilled) channels. The main reason for this is that CCCs can follow the molded geometry's paths, but regular machining methods cannot. Thermal stresses and warpage can be reduced by using CCCs, which also improve cycle time and provide a more uniform temperature distribution. Traditional channels, on the other hand, have a more involved design technique than CCC. Computer-aided engineering (CAE) simulations are essential for establishing an effective and cost-effective design. The sensitivity analysis of design variables is the emphasis of this research, with the goal of establishing a design optimization approach in the future. The ultimate goal is to optimize the location of Cooling Channels (CCs) in order to reduce ejection time and increase temperature uniformity. It can be concluded that the parametrization performed in ANSYS Parametric Design Language (APDL), as well as the design variables used, can be applied in practice and could be relevant in future optimization approaches.


Sign in / Sign up

Export Citation Format

Share Document