Transient thermal modeling of bioprocess equipment

Author(s):  
Cody M. Cummings ◽  
Hailei Wang ◽  
Mark Thomas Smith
1996 ◽  
Author(s):  
Anthony B. Campbell ◽  
Satish S. Nair ◽  
John B. Miles ◽  
Bruce W. Webbon

2012 ◽  
Vol 5 (2) ◽  
pp. 962-973 ◽  
Author(s):  
Timothy C. Scott ◽  
Fu-Long Chang ◽  
Masuma Khandaker ◽  
Sudhi Uppuluri

2012 ◽  
Vol 6 (6) ◽  
pp. 5345-5403
Author(s):  
S. Westermann ◽  
T. V. Schuler ◽  
K. Gisnås ◽  
B. Etzelmüller

Abstract. Thermal modeling is a powerful tool to infer the temperature regime of the ground in permafrost areas. We present a transient permafrost model, CryoGrid 2, that calculates ground temperatures according to conductive heat transfer in the soil and in the snow pack. CryoGrid 2 is forced by operational air temperature and snow depth products for potential permafrost areas in Southern Norway for the period 1958 to 2009 at 1 km spatial resolution. In total, an area of about 80 000 km2 is covered. The model results are validated against borehole temperatures, permafrost probability maps from "Bottom Temperature of Snow" measurements and inventories of landforms indicative of permafrost occurrence. The validation demonstrates that CryoGrid 2 can reproduce the observed lower permafrost limit to within 100 m at all validation sites, while the agreement between simulated and measured borehole temperatures is within 1 K for most sites. The number of grid cells with simulated permafrost does not change significantly between the 1960s the 1990s. In the 2000s, a significant reduction of about 40% of the area with average 2 m ground temperatures below 0 °C is found which mostly corresponds to degrading permafrost with still negative temperatures in deeper ground layers. The thermal conductivity of the snow is the largest source of uncertainty in CryoGrid 2 strongly affecting the simulated permafrost area. Finally, the prospects of employing CryoGrid 2 for an operational soil temperature product for Norway are discussed.


Sign in / Sign up

Export Citation Format

Share Document