power train
Recently Published Documents


TOTAL DOCUMENTS

579
(FIVE YEARS 80)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
M. Naveen Kumar ◽  
Vishal Jagota ◽  
Mohammad Shabaz

This article describes the power train design specifics in Formula student race vehicles used in the famed SAE India championship. To facilitate the physical validation of the design of the power train system of a formula student race car category vehicle engine of 610 cc displacement bike engine (KTM 390 model), a detailed design has been proposed with an approach of easing manufacturing and assembly along with full-scale prototype manufacturing. Many procedures must be followed while selecting a power train, such as engine displacement, fuel type, cooling type, throttle actuation, and creating the gear system to obtain the needed power and torque under various loading situations. Keeping the rules in mind, a well-suited engine was selected for the race track and transmission train was selected which gives the maximum performance. Based on the requirement, a power train was designed with all considerations we need to follow. Aside from torque and power, we designed an air intake with fuel efficiency in mind. Wireless sensors and cloud computing were used to monitor transmission characteristics such as transmission temperature management and vibration. The current study describes the design of an air intake manifold with a maximum restrictor diameter of 20 mm.


Author(s):  
Malav Sevak

Abstract: A wheel assembly is an integral part of a vehicle’s design that connects the wheel to the suspension system and transfers pressure from the road to the suspension system. It also holds the brake system and facilitates steering. Power transmission is also addressed in the powertrain department. We describe the process and simulation that result in the hub, upright, and differential mounting of a formula student car and the size of the sprocket for maximum acceleration in this report. As a result of the work done on this project, the resulting car has improved acceleration, is easy and reliable to assemble, and has fewer breakdowns than the previous model. The report includes all the calculations that support the simulations and a validating statement about the bearing selection.


2021 ◽  
Vol 13 (21) ◽  
pp. 11688
Author(s):  
Foad H. Gandoman ◽  
Emad M. Ahmed ◽  
Ziad M. Ali ◽  
Maitane Berecibar ◽  
Ahmed F. Zobaa ◽  
...  

Evaluation of the reliability of the components of electric vehicles (EVs) has been studied by international research centers, industry, and original equipment manufacturers over the last few years. Li-ion batteries are the main sensitive component of an EV’s E-power train. In other words, the Li-ion batteries for electromobility applications are one of the main components of an EV, which should be reliable and safe over the operational lifetime of the EV. Thus, investigating how to assess the reliability of the Li-ion battery has been a highly recommended task in most European projects. Moreover, with the increase in the number of new EVs made by European car companies, there has been a competition for market acquisition by these companies to win over customers and gain more market share. This article presents a comprehensive overview of the evaluation of the reliability of Li-ion batteries from practical and technical perspectives. Moreover, a case study for assessing reliability from practical and technical perspectives has been investigated.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6516
Author(s):  
Roberto Capata

As part of a project for the realization of a hybrid vehicle with an innovative power train system, the proposal presented is to disconnect the turbocharger group and study the different behavior of the compressor and turbine, so decoupled. In an actual turbocharger, when the power of the turbine exceeds that required by the compressor, the wastegate valve opens. In this way, a part of the flue gases does not evolve into a turbine and limits the power generated. In the solution proposed here (the paper considers only “compressor side”) all the flow rate of the flue gases is processed by the turbine. In this way, for each rpms of the IC engine, the turbine generates more power than that required by the compressor. This makes it possible to use this surplus of power for the auxiliaries and/or to recharge the battery pack of the considered hybrid vehicle. An additional advantage is, thanks to this surplus generated, that the battery pack can be smaller and can be recharged while driving. Therefore, the entire system operates as a “Range Extended”. As mentioned above, this work is focused on the direct compressor—innovative electric motor coupling will be sized and realized, and a subsequent series of experimental tests will confirm the feasibility of this phase of the project.


2021 ◽  
Author(s):  
Mengxuan Wei ◽  
Maohang Qiu ◽  
Shuai Yang ◽  
Xiaoyan Liu ◽  
Jeff Taylor ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 10988
Author(s):  
Sheng-Peng Zhang ◽  
Tae-Oh Tak

In this study, a method for estimating the efficiency of electric bicycle power train systems consisting of typical components, such as an electric motor, gears, sprockets, and chains is presented. In order to calculate the efficiency of a power train system, the relationship between the drive motor torque and the road-load that is exerted on the rear wheel was derived, considering kinematic inertia effects and friction losses between power transmission elements. Among the factors that influence efficiency, it was found that friction losses play a dominant role, while the effects of inertia are insignificant. The factors that influence the efficiency of electric bicycles due to friction losses, such as the transmission efficiency of the chain system and the bearing in the sprocket and wheel, were quantified. To validate the proposed efficiency calculation procedure, an experimental electric bicycle was used, in which the driving torque and road-load could be quantitatively assessed, and the actual efficiency was measured on a chassis dynamometer. It is shown that for a given motor torque, a measured and estimated dynamometer torque obtained by the proposed method exhibits a good correlation, and the transmission efficiency of each component was quantified. This method provides a practical and accurate means to calculate the drive train efficiency of electric bicycles at the design stage to improve the efficiency of electric bicycles.


2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110531
Author(s):  
Ji-Won Choi ◽  
Seung-Ho Han ◽  
Kwon-Hee Lee

It is a trend to implement weight reduction in parts in recent years when developing a new car. This trend is because weight reduction is essential to respond to tightening environmental regulations. In other words, parts manufacturers of body, chassis, and power train systems have made considerable efforts to reduce weight from the proto design stage. This study performed structural analysis and optimization for weight reduction of a propeller shaft for a passenger car. The natural frequency and the durability of the developing propeller shaft were examined through finite element analyses and tests. Then, optimization was accomplished by focusing on the weight reduction of the tubes made of given steel material. In this process, the metamodel-based optimization technique, kriging interpolation, was applied, and the weight was reduced by 5.3% based on the propeller shaft and 14.1% based on the tube. ANSYS Workbench was used for structural analysis, an in-house program was used to build the kriging model, and MATLAB was used for optimization.


2021 ◽  
Vol 263 (5) ◽  
pp. 1574-1585
Author(s):  
Sebastian Sepp ◽  
Joshua Goetz ◽  
Karsten Stahl

The progressing electrification of vehicle drive systems focuses more and more on efficient high-speed concepts. Increasing the motor speed leads to a higher power density of the electrified power train and thereby to an increased range for battery electric vehicles. The high rotational speeds cause new challenges in designing gearboxes regarding the efficiency and the acoustical behavior. Most present gearings in conventional vehicles are designed with high tooth depths to ensure low noise excitation behavior combined with the best possible efficiency. By changing the gear geometry to smaller tooth depths with higher pressure angles, it is possible to further decrease gear losses. However, the loss-optimized gear geometry must not jeopardize the beneficial acoustical behavior. In theoretical studies, the acoustical behavior of loss-optimized gears are investigated and compared to gearings designed according to the state of the art. Design calculations of the excitations of all ideal gears without deviations are on similar levels. However, application of such gear geometries faces severe challenges because the sensitivity to manufacturing deviations may be high. In this paper, simulation results and test results between low-NVH gears and loss-optimized gears are documented and analyzed.


Sign in / Sign up

Export Citation Format

Share Document