Heat transfer and storage characteristics of composite phase change materials with high oriented thermal conductivity based on polymer/graphite nanosheets networks

Author(s):  
Gong Cheng ◽  
Xinzhi Wang ◽  
Zhangzhou Wang ◽  
Yurong He
2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Li-Wu Fan ◽  
Zi-Qin Zhu ◽  
Min-Jie Liu ◽  
Can-Ling Xu ◽  
Yi Zeng ◽  
...  

The classical problem of constrained melting heat transfer of a phase change material (PCM) inside a spherical capsule was revisited experimentally in the presence of nanoscale thermal conductivity fillers. The model nano-enhanced PCM (NePCM) samples were prepared by dispersing self-synthesized graphite nanosheets (GNSs) into 1-dodecanol at various loadings up to 1% by mass. The melting experiments were carried out using an indirect method by measuring the instantaneous volume expansion upon melting. The data analysis was performed based on the homogeneous, single-component assumption for NePCM with modified thermophysical properties. It was shown that the introduction of nanofillers increases the effective thermal conductivity of NePCM, in accompaniment with an undesirable rise in viscosity. The dramatic viscosity growth, up to over 100-fold at the highest loading, deteriorates significantly the intensity of natural convection, which was identified as the dominant mode of heat transfer during constrained melting. The loss in natural convection was found to overweigh the decent enhancement in heat conduction, thus resulting in decelerated melting in the presence of nanofillers. Except for the case with the lowest heating boundary temperature, a monotonous slowing trend of melting was observed with increasing the loading.


Author(s):  
D. Zhou ◽  
C. Y. Zhao

Phase change materials (PCMs) have been widely used for thermal energy storage systems due to their capability of storing and releasing large amounts of energy with a small volume and a moderate temperature variation. Most PCMs suffer the common problem of low thermal conductivity, being around 0.2 and 0.5 for paraffin and inorganic salts, respectively, which prolongs the charging and discharging period. In an attempt to improve the thermal conductivity of phase change materials, the graphite or metallic matrix is often embedded within PCMs to enhance the heat transfer. This paper presents an experimental study on heat transfer characteristics of PCMs embedded with open-celled metal foams. In this study both paraffin wax and calcium chloride hexahydrate are employed as the heat storage media. The transient heat transfer behavior is measured. Compared to the results of pure PCMs samples, the investigation shows that the additions of metal foams can double the overall heat transfer rate during the melting process. The results of calcium chloride hexahydrate are also compared with those of paraffin wax.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
S. Arunachalam

Energy storage helps in waste management, environmental protection, saving of fossil fuels, cost effectiveness, and sustainable growth. Phase change material (PCM) is a substance which undergoes simultaneous melting and solidification at certain temperature and pressure and can thereby absorb and release thermal energy. Phase change materials are also called thermal batteries which have the ability to store large amount of heat at fixed temperature. Effective integration of the latent heat thermal energy storage system with solar thermal collectors depends on heat storage materials and heat exchangers. The practical limitation of the latent heat thermal energy system for successful implementation in various applications is mainly from its low thermal conductivity. Low thermal conductivity leads to low heat transfer coefficient, and thereby, the phase change process is prolonged which signifies the requirement of heat transfer enhancement techniques. Typically, for salt hydrates and organic PCMs, the thermal conductivity range varies between 0.4–0.7 W/m K and 0.15–0.3 W/m K which increases the thermal resistance within phase change materials during operation, seriously affecting efficiency and thermal response. This paper reviews the different geometry of commercial heat exchangers that can be used to address the problem of low thermal conductivity, like use of fins, additives with high thermal conductivity materials like metal strips, microencapsulated PCM, composite PCM, porous metals, porous metal foam matrix, carbon nanofibers and nanotubes, etc. Finally, different solar thermal applications and potential PCMs for low-temperature thermal energy storage were also discussed.


Sign in / Sign up

Export Citation Format

Share Document