energy storage properties
Recently Published Documents


TOTAL DOCUMENTS

652
(FIVE YEARS 344)

H-INDEX

56
(FIVE YEARS 18)

Author(s):  
Xiaohui Liu ◽  
Tongqing Yang ◽  
Weiping Gong

Energy-storage properties is a critical role to decide whether or not the dielectric capacitors can be applied in high power pulse devices, but single improvement in electric filed parameters or...


2021 ◽  
Author(s):  
Agata Fedorczyk ◽  
Agnieszka Krogul-Sobczak ◽  
Piotr Piotrowski

AbstractGraphene functionalized with dianthracene malonate was synthesized and used subsequently for construction of covalently bound graphene-fullerene hybrid nanomaterials. For this purpose, novel approach of Diels–Alder reaction of C60/C70 fullerene cores with anthracene moieties previously introduced onto graphene surface was successfully employed. Structure and composition of obtained graphene and its derivatives were characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and FT-IR spectroscopy. Obtained results revealed that both C60 and C70 fullerenes were found to be capable of formation desired Diels–Alder adducts, yielding products of different morphology. Capacitive properties of the synthesized energy storage nanomaterials were determined by means of cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) measurements, revealing that functionalization of graphene with C60 moieties enhances its energy storage properties.


2021 ◽  
Author(s):  
Shenghong Liu ◽  
Wenrui Zheng ◽  
Mingyue Huang ◽  
Yaning Xu ◽  
Wenhe Xie ◽  
...  

Abstract Defect engineering have profound influence on the energy storage properties of electrode hybrids by adjusting their intrinsic electronic characteristics. For iron carbide based materials, however, the effect of defect (especially cation vacancies) toward their electrochemical performance are still unclear. Herein, the feasible and scalable synthesis of FexC@NC with 3D honeycomb-like carbon architecture and abundant Fe vacancies via template etching is reported. Such structure enable outstanding lithium-ion storage properties owing to hierarchical pores, improved intrinsic electrochemical activity, as well as the introduction of more active sites. As a result, the FexC@NC-2 presents a high reversible specific capacity of 1079 mAh g−1 after 1000 cycles. Moreover, an excellent cycling stability can be achieved via maintaining a high-capacity retention (689 mAh g−1, 98.4%) over 1000 cycles at 5 A g−1. This study provides a feasible strategy for developing high-performance hybrids with hierarchical pore and rich defects structures.


Sign in / Sign up

Export Citation Format

Share Document