Journal of Materials Science
Latest Publications





Published By Springer-Verlag

1573-4803, 0022-2461

Valeria Murgulov ◽  
Catherine Schweinle ◽  
Michael Daub ◽  
Harald Hillebrecht ◽  
Michael Fiederle ◽  

AbstractSingle crystals of lead-free halide double perovskite Cs2AgBiBr6 sensor material manifest a remarkable potential for application in radiation detection and imaging. In this study, the purity and crystallinity of solution-grown Cs2AgBiBr6 single crystals with cubic Fm$$\overline{3}$$ 3 ¯ m symmetry have been corroborated by powder XRD measurements, while the single crystal XRD patterns reveal the dominant {111} lattice planes parallel to the sample surfaces. A wider range of lower resistivity values (106–109 Ωcm) was obtained from the I-V measurements compared to the 1.55 × 109–6.65 × 1010 Ωcm values from the van der Pauw method, which is typically higher for the Ag than for the carbon paint electrodes. Charge-carrier mobility values estimated from the SCLC method for the carbon paint-Cs2AgBiBr6 (1.90–4.82 cm2V−1 s−1) and the Ag-Cs2AgBiBr6 (0.58–4.54 cm2V−1 s−1) including the density of trap states (109–1010 cm−3) are comparable. Similar values of 1.89 cm2V−1 s−1 and 2.36 cm2V−1 s−1 are derived from the Hall effect measurements for a sample with carbon and Ag electrodes, respectively. The key electrical parameters including the X-ray photoresponse measurements indicate that the Cs2AgBiBr6 samples synthesized in this study satisfy requirements for radiation sensors. Graphical abstract

M. Nowak ◽  
A. Tolińska ◽  
L. Marciniak ◽  
M. Skrobańska ◽  
B. Tylkowski ◽  

AbstractThis study aimed to assess the characteristics, including morphology, physicochemical properties, and antibacterial properties, of silver nanocolloids obtained by D-glucose reduction. Silver nanoparticles were synthesized in accordance with the principles of green chemistry using D-glucose as a reductor. The obtained nanostructures were characterized by UV–vis spectroscopy, transmission electron microscopy, and dynamic light scattering. Stability tests performed after 1 month of storage revealed that the colloids prepared with and without polyvinylpyrrolidone as a stabilizer had the same properties. Distribution of the nanoparticles was tested using inductively coupled plasma mass spectrometry by doping the silver colloids into a natural soap mass. The antibacterial activity of the soap containing silver nanoparticles was tested on dirty hands. The antibacterial activity test demonstrated that the novel green soap materials improved with D-glucose-reduced silver nanoparticles possessed better antibacterial properties than a pure soap, and thus, they could be recommended for quotidian use by dermatological patients.

Sign in / Sign up

Export Citation Format

Share Document