Hydrogen emission characterization for proton exchange membrane fuel cell during oxygen starvation – Part 1: Low oxygen concentration

2016 ◽  
Vol 41 (8) ◽  
pp. 4843-4853 ◽  
Author(s):  
Mohammad Narimani ◽  
Jake DeVaal ◽  
Farid Golnaraghi
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1140
Author(s):  
Xiao Tang ◽  
Chunsheng Wang ◽  
Yukun Hu ◽  
Zijian Liu ◽  
Feiliang Li

An effective oxygen excess ratio control strategy for a proton exchange membrane fuel cell (PEMFC) can avoid oxygen starvation and optimize system performance. In this paper, a fuzzy PID control strategy based on granular function (GFPID) was proposed. Meanwhile, a proton exchange membrane fuel cell dynamic model was established on the MATLAB/Simulink platform, including the stack model system and the auxiliary system. In order to avoid oxygen starvation due to the transient variation of load current and optimize the parasitic power of the auxiliary system and the stack voltage, the purpose of optimizing the overall operating condition of the system was finally achieved. Adaptive fuzzy PID (AFPID) control has the technical bottleneck limitation of fuzzy rules explosion. GFPID eliminates fuzzification and defuzzification to solve this phenomenon. The number of fuzzy rules does not affect the precision of GFPID control, which is only related to the fuzzy granular points in the fitted granular response function. The granular function replaces the conventional fuzzy controller to realize the online adjustment of PID parameters. Compared with the conventional PID and AFPID control, the feasibility and superiority of the algorithm based on particle function are verified.


2021 ◽  
Vol 483 ◽  
pp. 229193
Author(s):  
Yu Kakizawa ◽  
Christopher L. Schreiber ◽  
Shogo Takamuku ◽  
Makoto Uchida ◽  
Akihiro Iiyama ◽  
...  

2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


Sign in / Sign up

Export Citation Format

Share Document