A review on hydrogen generation, explosion, and mitigation during severe accidents in light water nuclear reactors

2018 ◽  
Vol 43 (4) ◽  
pp. 1939-1965 ◽  
Author(s):  
R. Gharari ◽  
H. Kazeminejad ◽  
N. Mataji Kojouri ◽  
A. Hedayat
1987 ◽  
Vol 78 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Edward C. Beahm ◽  
Yun-Ming Wang ◽  
Simon J. Wisbey ◽  
William E. Shockley

Author(s):  
N. Reinke ◽  
K. Neu ◽  
H.-J. Allelein

The integral code ASTEC (Accident Source Term Evaluation Code) commonly developed by IRSN and GRS is a fast running programme, which allows the calculation of entire sequences of severe accidents (SA) in light water reactors from the initiating event up to the release of fission products into the environment, thereby covering all important in-vessel and containment phenomena. Thus, the main fields of ASTEC application are intended to be accident sequence studies, uncertainty and sensitivity studies, probabilistic safety analysis level 2 studies as well as support to experiments. The modular structure of ASTEC allows running each module independently and separately, e.g. for separate effects analyses, as well as a combination of multiple modules for coupled effects testing and integral analyses. Among activities concentrating on the validation of individual ASTEC modules describing specific phenomena, the applicability to reactor cases marks an important step in the development of the code. Feasibility studies on plant applications have been performed for several reactor types such as the German Konvoi PWR 1300, the French PWR 900, and the Russian VVER-1000 and −440 with sequences like station blackout, small- or medium-break loss-of-coolant accident, and loss-of-feedwater transients. Subject of this paper is a short overview on the ASTEC code system and its current status with view to the application to severe accidents sequences at several PWRs, exemplified by selected calculations.


1998 ◽  
Vol 540 ◽  
Author(s):  
C. Degueldre ◽  
M. Pouchon ◽  
M. Doebli ◽  
G. Ledergerber

AbstractA zirconia based ceramic is foreseen as an inert matrix fuel for burning excess plutonium in light water nuclear reactors. For reactor safety reasons the behaviour of volatile fission products such as cesium and iodine must be studied since a retention of fission products is favourable for licensing the studied inert matrix fuel. In this study, implantation of Cs and I was performed into polycrystalline (Zr0.85, Y0.15)O1.925 samples. The implantation depth was selected on the basis of the ability to observe by Rutherford backscattering spectroscopy (RBS) the behaviour of Cs and I after treatment. With a 1 MeV incident energy, the ions are implanted at a depth of 200 nm as predicted by TRIM. After implantations full quantification of I and Cs concentration profiles was performed by RBS. The implantation profiles are measured as a function of sample temperature during stepwise heating programs. It is interesting to observe retention of Cs and I at relatively high temperature (e.g. for 2 h, below 900 K for Cs and below 1400 K for I). This behaviour is likely to be due to the size and interactions of these species in the zirconia solid solution.


2017 ◽  
Vol 2017 ◽  
pp. 1-25 ◽  
Author(s):  
Bruno Gonfiotti ◽  
Sandro Paci

The integral Phébus tests were probably one of the most important experimental campaigns performed to investigate the progression of severe accidents in light water reactors. In these tests, the degradation of a PWR fuel bundle was investigated employing different control rod materials and burn-up levels in strongly or weakly oxidizing conditions. From the results of such tests, numerical codes such as ASTEC and MELCOR have been developed to describe the evolution of a severe accident. After the termination of the experimental Phébus campaign, these two codes were furthermore expanded. Therefore, the aim of the present work is to reanalyze the first Phébus test (FPT-0) employing the updated ASTEC and MELCOR versions to ensure that the new improvements introduced in such codes allow also a better prediction of these Phébus tests. The analysis focuses on the stand-alone containment aspects of this test, and the paper summarizes the main thermal-hydraulic results and presents different sensitivity analyses carried out on the aerosols and fission products behavior. This paper is part of a series of publications covering the four executed Phébus tests employing a solid PWR fuel bundle: FPT-0, FPT-1, FPT-2, and FPT-3.


JOM ◽  
2016 ◽  
Vol 68 (11) ◽  
pp. 2938-2943 ◽  
Author(s):  
P. J. Blau ◽  
J. Qu ◽  
R. Lu

Sign in / Sign up

Export Citation Format

Share Document