wear behavior
Recently Published Documents


TOTAL DOCUMENTS

4885
(FIVE YEARS 1413)

H-INDEX

78
(FIVE YEARS 12)

2022 ◽  
Vol 147 ◽  
pp. 107652
Author(s):  
Shiwen Zou ◽  
Zhenjiang Zhao ◽  
Wen Xu ◽  
Xiaoqing Ni ◽  
Liang Zhang ◽  
...  

2022 ◽  
Vol 149 ◽  
pp. 107845
Author(s):  
Mina Zhang ◽  
Dafeng Wang ◽  
Longjun He ◽  
Xuyang Ye ◽  
Wentai Ouyang ◽  
...  

2022 ◽  
Vol 276 ◽  
pp. 115476
Author(s):  
Surendra Kumar Patel ◽  
Virendra Pratap Singh ◽  
Deepak Kumar ◽  
Barnik Saha Roy ◽  
Basil Kuriachen

Wear ◽  
2022 ◽  
Vol 490-491 ◽  
pp. 204105
Author(s):  
Toshiaki Nishi ◽  
Takeshi Yamaguchi ◽  
Kei Shibata ◽  
Yuhei Ito ◽  
Kazuo Hokkirigawa
Keyword(s):  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 659
Author(s):  
Sultan Althahban ◽  
Yosef Jazaa ◽  
Omar Bafakeeh ◽  
Abdullah S. Alomari ◽  
Hossam El-Din M. Sallam ◽  
...  

The growing applications of iron/copper bimetallic composites in various industries are increasing. The relationship between the properties of these materials and manufacturing parameters should be well understood. This paper represents an experimental study to evaluate the effect of reinforcement (steel rod) preheating temperature on the mechanical properties (bond strength, microhardness, and wear resistance) of copper matrix composites (QMMC). In preparing the QMMC samples, the melted copper was poured on a steel rod that had been preheated to various temperatures, namely, room temperature, 600 °C, 800 °C, and 1200 °C. Properties of the QMMC (interface microstructure, interfacial bonding strength, microhardness, and wear) were investigated. The experimental results revealed that the best bond between the copper matrix and steel rod formed only in the composites prepared by preheating the steel rods with temperatures lower than the recrystallization temperature of steel (723 °C). This is because the oxide layer and shrinkage voids (due to the difference in shrinkage between the two metals) at the interface hinder atom diffusion and bond formation at higher temperatures. The microhardness test showed that preheating steel rod to 600 °C gives the highest value among all the samples. Furthermore, the QMMC’s wear behavior confirmed that the optimization of preheating temperature is 600 °C.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liwu Wang ◽  
Yanfeng Han ◽  
Dongxing Tang ◽  
Jianlin Cai

Purpose The purpose of this paper is to verify the effectiveness of the proposed transient mixed lubrication and wear coupling model [mixed lubrication and wear (MLW) coupling model] under water lubricated conditions by comparing with the experimental results. Design/methodology/approach Water lubricated bearings are the key parts of the transmission system of an underwater vehicle and some surface ships. In this study, the friction and wear behaviors of rubber, nylon and polyether ether ketone (PEEK) samples with stainless steel underwater lubrication were compared by using ring-block contact structure on multifunctional friction and wear test bench-5000 friction and wear tester. Findings The results show that the transient wear depth and wear amount of PEEK, nylon and rubber samples under water lubrication are in good agreement with the calculated results of the theoretical model, which verifies the rationality and scientific nature of the MLW coupling model. Thus, the numerical model is applicable for the wear prediction of the journal bearing under water-lubricated conditions. Furthermore, numerical and experimental results reveal that the anti-wear performance among three water-lubricated materials can be ranked by: PEEK > nylon > rubber. Originality/value It is expected that this study can provide more information for experimental and numerical research of water-lubricated bearings under water-lubricated conditions.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 302
Author(s):  
Kawkb M. El-Tamimi ◽  
Dalia A. Bayoumi ◽  
Mohamed M. Z. Ahmed ◽  
Ibrahim Albaijan ◽  
Mohammed E. El-Sayed

The wear of acrylic denture teeth is a serious problem that can change the vertical dimensions of dentures. This study evaluates the effect of adding salinized nano ZrO2 particles on the microstructure, hardness, and wear resistance of acrylic denture teeth. Heat polymerizing polymethyl methacrylate resin was mixed with salinized ZrO2 at concentrations of 5 wt% and 10 wt%. Acrylic resin specimens without filler addition were used as a control group. SEM/EDS analyses were performed and the Vickers’ hardness was evaluated. Two-body wear testing was performed using a chewing simulator with a human enamel antagonist. After subjecting the samples to 37,500 cycles, both height loss and weight loss were used to evaluate the wear behavior. The microstructural investigation of the reinforced-denture teeth indicates sound nanocomposite preparation using the applied regime without porosity or macro defects. The addition of zirconium oxide nanofillers to PMMA at both 5% and 10% increased the microhardness, with values of up to 49.7 HV. The wear mechanism in the acrylic base material without nanoparticle addition was found to be fatigue wear; a high density of microcracks were found. The addition of 5 wt% ZrO2 improved the wear resistance. Increasing the nanoparticles to 10 wt% ZrO2 further improved the wear resistance, with no microcracks found.


Sign in / Sign up

Export Citation Format

Share Document