Modeling and simulation of surface roughness in ultrasonic assisted magnetic abrasive finishing process

2017 ◽  
Vol 133 ◽  
pp. 344-356 ◽  
Author(s):  
Aviral Misra ◽  
Pulak M. Pandey ◽  
U.S. Dixit
Author(s):  
Prateek Kala ◽  
Pulak M Pandey

This article evaluates the finishing performance of ultrasonic-assisted double-disk magnetic abrasive finishing process on two paramagnetic materials (copper alloy and stainless steel) with different mechanical properties such as flow stress, hardness, shear modulus, and so on. The finishing experiments were performed based on response surface methodology. The results obtained after finishing have been analyzed to determine the effect of different process parameters such as working gap, rotational speed, and pulse-on time of ultrasonic vibration for both work materials and to study various interaction effects that may significantly affect the finishing performance by the process. The outcome of analysis for the two different work materials has been critically compared to understand the effect of the considered process parameters on the finishing performance of the process based on mechanical properties of the workpiece such as hardness. Furthermore, the scanning electron microscopy and atomic force microscopy were carried on the workpiece surface to understand the possible mechanism of material removal and the surface morphology produced after the finishing process.


Author(s):  
Arthur A. Graziano ◽  
Vasishta Ganguly ◽  
Tony Schmitz ◽  
Hitomi Yamaguchi

Freeform surfaces, including the femoral components of knee prosthetics, present a significant challenge in manufacturing. The finishing process is often performed manually, which leads to surface finish variations. In the case of knee prosthetics, this can be a factor leading to accelerated wear of the polyethylene tibial component. The wear resistance of polyethylene components might be influenced by not only the roughness but also the lay of femoral component surfaces. This study applies magnetic abrasive finishing (MAF) for nanometer-scale finishing of cobalt chromium alloys, which are commonly used in knee prosthetics and other freeform components. Using flat disks as workpieces, this paper shows the dominant parameters for controlling the lay in MAF and demonstrates the feasibility of MAF to alter the lay while controlling the surface roughness. The manually finished disk surfaces (with roughness around 3 nm Sa), consisting of random cutting marks, were compared to MAF-produced surfaces (also with roughness around 3 nm Sa) with different lays. Tests using deionized water droplets show that the lay influences the wetting properties even if the surface roughness changes by no more than a nanometer. Surfaces with unidirectional cutting marks exhibit the least wettability, and increasing the cross-hatch angle in the MAF-produced surfaces increases the wettability. Surfaces consisting of short, intermittent cutting marks were the most wettable by deionized water.


Sign in / Sign up

Export Citation Format

Share Document