chromium alloy
Recently Published Documents


TOTAL DOCUMENTS

853
(FIVE YEARS 135)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Author(s):  
R. Ganapathy Sriniva ◽  
S Palani ◽  
C Rajaravi ◽  
S Karthik

Abstract The nickel-iron-chromium (alloy 20) is enriching by hybrid surface treatment through plasma nitride (PN) and physical vapor deposition (PVD) process. The plasma nitriding process takes 12 hours at 500°C. Potentiodynamic testing is used to characterize the corrosion performance of the treated material, followed by morphological analysis of the exposed surface; XRD, EDX, SEM, hardness, and tensile testing are used to investigate appropriate coating properties. Plasma nitride and hybrid PVD nickel-iron-chromium alloys exhibit perlite (γ + α ’) phases and martensite (γ + α) phases, respectively. The martensite microstructure ensures superior tensile strength and hardness. The pin-on-disc tribometer test proposes to analyze friction and hard-faced behavior in the dry sliding position. The inclusion of Si improves the adherent oxide film, resulting in a low wear rate in TiAlSiN alloy 20. Due to the presence of the passive film, TiAlSiN alloy 20 exposes the most passive region to attain better corrosion resistance.


Hardness and microstructure homogeneity of pure copper and iron-chromium alloy processed by severe plastic deformation (SPD) were investigated in grain refinement. Equal channel angular pressing (ECAP) is one of the well-known techniques of the SPD technique due to their up-scale ability and other methods. SPD was applied to pure copper and iron-chromium alloy at comparable temperatures up to four passes. The microstructure and microhardness were observed and measured in the transverse plane for each billet. The homogeneity observation was carried out from the sub-surface until in the middle of the billet. The result showed that the deformed structure appeared adequately after the first pass and had a higher hardness level. The first pass showed a higher inhomogeneity factor than the fourth pass due to the homogeneity microstructure. The hardness also showed homogeneous value along the transverse plane, and it was concluded that ECAP could achieve complete homogeneity in grain refinement


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Vito Kovač ◽  
Matic Bergant ◽  
Janez Ščančar ◽  
Jasmina Primožič ◽  
Polona Jamnik ◽  
...  

Misaligned teeth have a tremendous impact on oral and dental health, and the most efficient method of correcting the problem is orthodontic treatment with orthodontic appliances. The study was conducted to investigate the metal composition of selected orthodontic alloys, the release of metal ions, and the oxidative consequences that the metal ions may cause in the cell. Different sets of archwires, stainless steel brackets, and molar bands were incubated in artificial saliva for 90 days. The composition of each orthodontic material and quantification of the concentration of metal ions released were evaluated. Metal ion mixtures were prepared to determine the occurrence of oxidative stress, antioxidant enzyme defense system, and oxidative damage to proteins. The beta titanium alloy released the fewest metal ions and did not cause oxidative stress or protein damage. The metal ions from stainless steel and the cobalt-chromium alloy can cause oxidative stress and protein damage only at high concentrations. All metal ions from orthodontic alloys alter the activity of antioxidant enzymes in some way. The determined amounts of metal ions released from orthodontic appliances in a simulated oral environment are still below the maximum tolerated dose, and the concentrations of released metal ions are not capable of inducing oxidative stress, although some changes in antioxidant enzyme activity were observed at these concentrations.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 13
Author(s):  
Milad Hojati ◽  
Herbert Danninger ◽  
Christian Gierl-Mayer

In this paper, the effect of processes occurring during the sintering of four powder metallurgy steel grades on the resulting properties were investigated. This included three grades prepared from plain iron powder with admixed graphite, one grade alloyed also with elemental copper and another with Fe-Mn-Si masteralloy. One further grade was prepared from Cr-Mo pre-alloyed powder with admixed graphite. The effect of the sintering processes was examined in the temperature range of 700–1300 °C in an inert atmosphere (Ar). In order to study oxygen removal, DTA/TG runs linked with mass spectrometry (MS) as well as C/O elemental analysis were performed. Charpy impact tests and fractography studies were performed to study the effect of the temperature on the formation and growth of sintering contacts. Characterization also included metallography, dimensional change, sintered density, and hardness measurements to describe the dissolution of carbon and alloying elements during the process. Physical properties that were measured were electrical conductivity and coercive force. The results showed that, in all steels, the reduction of oxides that occur during the heating stage plays a key role in the formation and growth of the sintering contacts as well as in the completion of alloying processes. In the chromium alloy steel, the presence of the stable chromium oxides delays these processes up to higher temperatures, while in the other steels that are based on plain iron powder, these processes take place earlier in the heating stage, at lower temperatures. Compared to the standard Fe-C and Fe-Cu-C grades, the Cr-Mo steel requires more sophisticated sintering to ensure oxygen removal, but on the other hand it offers the best properties. The masteralloy variant, finally, can be regarded as a highly attractive compromise between manufacturing requirements, alloy element content, and product properties.


2021 ◽  
Author(s):  
he huayan ◽  
wang guangyuan

Abstract Radiation caused by high-energy particles would speed up the damage of accelerator equipment. The high residual radiation from equipment affects staff health as well. Intelligent robots receive various limits to replace human in completing complex and time-consuming maintenance in radiative region because of high sensitivity to radiation. The 4Cr13 stainless ball-pocket was designed in the study of localization in long distance with the advantages of the conical fit technology. Moreover, the 4Cr13 stainless ball-pocket and bearing ball combine and form a locating structure, which has good performance on automatic aligning, self-locking and rapid dismantling. The comprehensive mechanical properties of 4Cr13 stainless ball-pocket were studied and optimized based on three heat treatment methods of martensite steel containing chromium alloy. The study of machining conditions states that compared with the design accuracy of localization, the machining error retains definite allowance. The 4Cr13 stainless ball-pocket successfully exhibits sufficient supporting strength, wearing reducing and radiation resistance. This study shows that 4Cr13 stainless ball-pocket has better fitting precision than 0.2 mm in practice. This study could offer a reliable strategy and measure for long-distance localization in other dangerous regions.


2021 ◽  
Vol 22 (2) ◽  
pp. 93-97
Author(s):  
Marius Valeriu Comici ◽  
◽  
Ioan Giacomelli ◽  
Maria Stoicanescu ◽  
◽  
...  

Microstructure and strain hardening behaviour of iron-chromium alloy subjected to severe plastic deformation (SPD) have been investigated in grain refinement and deformation routes. Equal channel angular pressing (ECAP) was used in this SPD technique due to their un-change dimension billet. The purpose of this research is to investigate the structure and the strain hardening of iron chromium alloy subjected by ECAP process. The ECAP process was carried by routes A, Bc and C up to four passes at 423 K temperature. The strength of the material was measured by tensile testing with 3 mm gauge length, and the strain hardening behaviour was investigated based on the true stress-strain curve. The effect of the deformation route on microstructure and texture was observed by electron backscattered diffraction (EBSD) analysis at the normal, transverse and rolling direction. The result showed that route Bc showed the highest strength and ductility of the ECAP processed material compare to other routes due to their 90 degrees rotation of each ECAP passes number. The increased strength of materials was also associated with grain refinement and accumulation dislocation. It concluded that the ECAP process by route Bc could be used for further material treatment and application for industrial purposes.


The effect of preliminary deformation on the microstructure and texture of iron-chromium alloy prepared by severe plastic deformation (SPD) has been investigated in grain refinement and inhomogeneity structure. Equal channel angular pressing (ECAP) is a well-known SPD process that uses a die channel with a sharp angle. The texture and misorientation map of ECAP processed material was observed electron backscattered diffraction (EBSD) analysis, providing information on structure evolution. The observation was done in the transverse plane from the middle to the sub-surface. The data logger also records the pressure of the ECAP process. The result showed that the sub-surface has a more deformed structure than the middle due to the die channel's sharp angle and shear direction. The texture exhibited a random orientation after the first pass ECAP process. The stacking fault energy and accumulation dislocation are also associated with this process. Several shear bands can be seen clearly, which is parallel to the shear direction. It concluded that the preliminary deformation by ECAP was effective to promote grain refinement due to their high equivalent strain


2021 ◽  
Vol 9 (1) ◽  
pp. 01-09
Author(s):  
Ibrahim M. Hamouda ◽  
Enas M. Elddainony ◽  
Mosaad A. ELgabrouny ◽  
Fahim M. El-Shamy

Background: Fracture of ceramic-metal restorations is a major problem facing the dentists and the patients. There are several bonding systems currently available in the market to repair the fractured ceramic-metal restorations inside or outside the oral cavity. Purpose: The purpose of this study was to test the efficiency of repairing of metal-ceramic restorations using different bonding systems with different surface treatments. This efficiency was tested through the conduction of shear bond strength of the composite bonded to the porcelain and to nickel-chromium alloy using three different bonding agents (Excite, AdheSE, and Prompt L-Pop) with four different surface treatments (sandblasting and enchant, diamond stone roughening, sandblasting and hydrofluoric acid etching, or without surface treatment). Materials and Methods: A total of 120 specimens were prepared, 60 specimens from porcelain and 60 specimens from nickel-chromium alloy. Each group was divided into three equal subgroups, 20 specimens each, corresponding to the 3 bonding agents used. Each subgroup was further subdivided into four subgroups, 5 specimens each, corresponding to the surface treatment procedures. Bonding agents applied over all specimens and cured, followed by application of a micro-hybrid light-cured composite resin (Tetric Ceram). Thermal cycling was done for all specimens between 5°C and 55°C for 1000 cycles with a 10-second dwell time. Shear bond strength test was conducted using a universal testing machine ata cross-head speed of 0.5 mm/min. Results: The highest shear bond strength value recorded for the porcelain specimens bonded with Excite bonding agent with surface treatment sandblasting and hydrofluoric acid etching. In metal groups, the AdheSE bonding agent showed the highest shear bond strength value with the same surface treatment of the porcelain specimens. It was observed that sandblasting followed by hydrofluoric acid etching produced the most effective treatment method for porcelain and metal surfaces. Conclusion: The most effective technique for repairing metal ceramic restoration was sandblasting with hydrofluoric acid etching as surface treatment together with AdheSE or Excite bonding agents.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1796
Author(s):  
Vladimir Promakhov ◽  
Nikita Schulz ◽  
Alexander Vorozhtsov ◽  
Andrey Savinykh ◽  
Gennady Garkushin ◽  
...  

This paper presents the results of measurements of the spall strength and elastic-plastic proper-ties, under dynamic and static loads, of the high-strength heat-resistant nickel-chromium alloy Inconel 625, obtained by the direct laser deposition method. The structural parameters of the obtained samples and the mechanical properties during static tests were studied. According to our information, anisotropy in the structural parameters operates primarily at the level of plastic deformation of alloys. Shock compression of the additive alloy Inconel 625 samples in the range of 6–18 GPa was carried out using a light-gas gun, both along and perpendicular to the direction of the deposition. The strength characteristics were determined from the analysis of the shock wave profiles, which were recorded using the VISAR laser velocimeter during the loading of samples. It was found that the value of the spall strength of additive samples does not depend on the direction of deposition, and the Hugoniot elastic limit of samples loaded perpendicular to the deposition direction is about ~10% higher. With an increase in the maximum compression stress, the material’s spall strength increases slightly, but for both types of samples, a slight decrease in the Hugoniot elastic limit was observed as the compression stresses increase. On the basis of the measured wave profiles, shock Hugoniots of the samples of the alloy Inconel 625, loaded both along and perpendicular to the direction of deposition, are constructed in this pressure range.


Sign in / Sign up

Export Citation Format

Share Document