Experimental investigations into ultrasonic-assisted double-disk magnetic abrasive finishing of two paramagnetic materials

Author(s):  
Prateek Kala ◽  
Pulak M Pandey

This article evaluates the finishing performance of ultrasonic-assisted double-disk magnetic abrasive finishing process on two paramagnetic materials (copper alloy and stainless steel) with different mechanical properties such as flow stress, hardness, shear modulus, and so on. The finishing experiments were performed based on response surface methodology. The results obtained after finishing have been analyzed to determine the effect of different process parameters such as working gap, rotational speed, and pulse-on time of ultrasonic vibration for both work materials and to study various interaction effects that may significantly affect the finishing performance by the process. The outcome of analysis for the two different work materials has been critically compared to understand the effect of the considered process parameters on the finishing performance of the process based on mechanical properties of the workpiece such as hardness. Furthermore, the scanning electron microscopy and atomic force microscopy were carried on the workpiece surface to understand the possible mechanism of material removal and the surface morphology produced after the finishing process.

Author(s):  
Rahul S. Mulik ◽  
Pulak M. Pandey

An ultrasonic assisted magnetic abrasive finishing (UAMAF) process uses an ultrasonic vibrations and magnetic abrasive finishing (MAF) process. In a finishing process there are two types of forces that act during the finishing of the workpiece by UAMAF, namely, normal force and cutting force. The finishing forces have direct influence on the generation of the finished surface and accuracy of the workpiece. Therefore, in the present work, normal force and finishing torque have been measured at various processing conditions during UAMAF. Supply voltage to the electromagnet and finishing gap have been found to be the significant factors affecting the finishing forces and torque. Mathematical models based on process physics have been developed to predict the finishing force and torque. The developed models predict force and torque as a function of supply voltage, machining gap, and workpiece hardness. The developed mathematical models for normal force and finishing torque have been validated and were found to be in good agreement with experimental results.


Sign in / Sign up

Export Citation Format

Share Document