Measurements and flow pattern visualizations of two-phase flow boiling in single channel microevaporators

2012 ◽  
Vol 42 ◽  
pp. 52-61 ◽  
Author(s):  
Elmer Galvis ◽  
Richard Culham
Author(s):  
Claudi Marti´n-Callizo ◽  
Bjo¨rn Palm ◽  
Wahib Owhaib ◽  
Rashid Ali

The present work reports on flow boiling visualization of refrigerant R-134a in a vertical circular channel with internal diameter of 1.33 mm and 235 mm in heated length. Quartz tube with a homogeneous ITO-coating is used allowing heating and simultaneous visualization. Flow patterns have been observed along the heated length with the aid of a digital camera with close-up lenses. From the flow boiling visualization, seven distinct two-phase flow patterns have been observed: Isolated bubbly flow, confined bubbly flow, slug flow, churn flow, slug-annular flow, annular flow, and mist flow. Two-phase flow pattern observations are presented in the form of flow pattern maps. Finally, the experimental flow pattern map is compared to models developed for conventional sizes as well as to a microscale map for air-water mixtures available in the literature, showing a large discrepancy.


2004 ◽  
Vol 126 (3) ◽  
pp. 288-300 ◽  
Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406×2.032mm2 cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Features unique to two-phase micro-channel flow were identified and employed to validate key assumptions of an annular flow boiling model that was previously developed to predict pressure drop and heat transfer in two-phase micro-channel heat sinks. This earlier model was modified based on new findings from the adiabatic two-phase flow study. The modified model shows good agreement with experimental data for water-cooled heat sinks.


1998 ◽  
Vol 120 (1) ◽  
pp. 140-147 ◽  
Author(s):  
N. Kattan ◽  
J. R. Thome ◽  
D. Favrat

An improved two-phase flow pattern map is proposed for evaporation in horizontal tubes. The new map was developed based on flow pattern data for five different refrigerants covering a wide range of mass velocities and vapor qualities. The new map is valid for both adiabatic and diabatic (evaporating) flows and accurately identifies about 96 percent of the 702 data points. In addition, the new flow pattern map includes the prediction of the onset of dryout at the top of the tube during evaporation inside horizontal tubes as a function of heat flux and flow parameters.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Claudi Martín-Callizo ◽  
Björn Palm ◽  
Wahib Owhaib ◽  
Rashid Ali

The present work reports on flow boiling visualization of refrigerant R-134a in a vertical circular channel with an internal diameter of 1.33 mm and 235 mm in heated length. A quartz tube with a homogeneous Indium Tin Oxide coating is used to allow heating and simultaneous visualization. Flow patterns have been observed along the heated length with the aid of high-speed complementary metal oxide semiconductor (CMOS) digital camera. From the flow boiling visualization, seven distinct two-phase flow patterns have been observed: isolated bubbly flow, confined bubbly flow, slug flow, churn flow, slug-annular flow, annular flow, and mist flow. Two-phase flow pattern observations are presented in the form of flow pattern maps. The effects of the saturation temperature and the inlet subcooling degree on the two-phase flow pattern transitions are elucidated. Finally, the experimental flow pattern map is compared with models developed for conventional sizes as well as to a microscale map for air-water mixtures available in literature, showing a large discrepancy.


Evergreen ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 150-154
Author(s):  
S A Pamitran ◽  
S Novianto ◽  
S A Santoso

Author(s):  
Daniel Sempe´rtegui ◽  
Gherhardt Ribastki

In the present work, an objective method to characterize two-phase flow pattern was developed and implemented. The method is based on the characteristics of the signals provided by transducers measuring local temperature and pressure plus the intensity of a laser beam crossing the two-phase flow. The statistical characteristics of these signals were used as input features for the k-means clustering method. In order to implement the method, experimental flow patterns were obtained during flow boiling of R245fa in a 2.32 mm ID tube. Experiments were performed for mass velocities from 100 to 700kg/m2s, saturation temperature of 31 °C and vapor qualities up to 0.99. The cluster classification was compared against flow patterns segregated based on high speed camera images (8000 images/s) and a reasonable agreement was obtained.


Sign in / Sign up

Export Citation Format

Share Document