Experimental study on the characteristics of air–water two-phase flow in vertical helical rectangular channel

2015 ◽  
Vol 73 ◽  
pp. 227-237 ◽  
Author(s):  
X.F. Liu ◽  
G.D. Xia ◽  
G. Yang
2021 ◽  
Vol 53 (1) ◽  
pp. 61-68
Author(s):  
Jiancheng Zhou ◽  
Tianzhou Ye ◽  
Dalin Zhang ◽  
Gongle Song ◽  
Rulei Sun ◽  
...  

2018 ◽  
Vol 53 (3) ◽  
pp. 336-341
Author(s):  
Tomonori Ihara ◽  
Samwel Aloyo Andayi ◽  
Tatsuya Hazuku ◽  
Tomoji Takamasa ◽  
Takashi Hibiki

2017 ◽  
Author(s):  
Guojun Yu ◽  
Wuyue Ren ◽  
Jiawei Bian ◽  
G. H. Su ◽  
Wenxi Tian ◽  
...  

Author(s):  
Youjia Zhang ◽  
Weimin Ma ◽  
Shengjie Gong

This study is concerned with liquid film dynamics and stability of annular flow, which plays an important role in understanding film rupture and dryout in boiling heat transfer. The research work starts from designing and making a test facility which enables the visualization and measurement of liquid film dynamics. A confocal optical sensor is applied to track the evolution of film thickness. A horizontal rectangular channel made of glass is used as the test section. Deionized water and air are supplied into that channel in such a way that an initial stratified flow forms, with the liquid film on the bottom wall. The present study is focused on characterization of liquid film profile and dynamics in term of interfacial wave and shear force induced film rupture under adiabatic condition. Based on the experimental data and analysis, it is found that given a constant water flowrate, the average thickness of water film decreases with increasing air flowrate, while the interfacial wave of the two-phase flow is intensified. As the air flowrate reaches a critical value, a localized rupture of the water film occurs.


2016 ◽  
Vol 3 (6) ◽  
pp. 16-00255-16-00255 ◽  
Author(s):  
Haruyuki NISHIJIMA ◽  
Kyohei TSUCHII ◽  
Masafumi NAKAGAWA

Sign in / Sign up

Export Citation Format

Share Document