void fraction
Recently Published Documents


TOTAL DOCUMENTS

1743
(FIVE YEARS 247)

H-INDEX

56
(FIVE YEARS 5)

Author(s):  
Niccolo Giannetti ◽  
Moojoong Kim ◽  
Hiroaki Yoshimura ◽  
Kiyoshi Saito

2022 ◽  
pp. 014459872110695
Author(s):  
Chunhua Zhang ◽  
Jiahui Shen ◽  
Mei Wan

The effective thermal conductivity (ETC) model of loose residual coal in goaf is a method to study the heat transfer law of spontaneous combustion in goaf. In order to study the effect of coal particle size and ambient temperature on heat transfer, coal samples of different sizes were taken from the FuSheng (FS) mine, and the void fraction, the thermal conductivity (TC) of the residual coal under different ambient temperature were tested. Additionally, four types of ETC models of loose residual coal in goaf were obtained and the average relative errors of the TC were analyzed. The results showed that the void fraction, the coal particle size and ambient temperature have different effects on the spontaneous combustion of the residual coal. The effect of coal sample size on the heat transfer is 100 times that of the ambient temperature. The changes in the ETC and average relative error of the different models were consistent. The heat transfer in the spontaneous combustion of residual coal has a direct relationship with the spatial distribution and heat transfer modes of the loose residual coal in the goaf.


Author(s):  
Omar Sadek ◽  
Atef Mohany ◽  
Marwan A. Hassan

Abstract For decades, fluidelastic instability (FEI) has been known to cause dramatic mechanical failures in tube bundles. Therefore, it has been extensively studied to mitigate its catastrophic consequences. Most of these studies were conducted in controlled experiments where significant simplifications to the geometry and flow conditions were utilized. One of these simplifications is the assumption that all tubes have the same dynamic characteristics. However, in steam generators with U-bend tube configuration, the natural frequencies of tubes are nonuniform due to manufacturing tolerances and tubes' curvature in the U-bend region. Thus, this investigation aims to understand the rule of frequency variation (detuning) on FEI in two-phase flow. This includes investigating the effect of detuning on transverse and streamwise FEI for air-water mixture flow. The role of FEI damping and stiffness couplings was investigated over the entire range of air void fraction, or equivalently, the mass-damping parameter. It was found that frequency detuning could elevate the stability threshold caused by either coupling at high air void fraction in the case of transverse FEI. Furthermore, the frequency detuning had a marginal effect on the stability threshold for water flow. It was observed that the mass-damping parameter has a critical impact on FEI under detuning conditions.


CFD Letters ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 100-112
Author(s):  
Shugata Ahmed ◽  
Erwin Sulaeman ◽  
Ahmad Faris Ismail ◽  
Muhammad Hasibul Hasan ◽  
Zahir Hanouf

In recent years, researchers are investigating several potential applications of two-phase flow in micro-gap heat sinks; electronic cooling is one of them. Further, internal micro-fins are used to enhance the heat transfer rate. However, the pressure drop penalty due to small gap height and fin surfaces is a major concern. Hence, minimization of thermal resistance and pressure drop is required. In this paper, effects of operating conditions, e.g., wall heat flux, pumping power, and inlet void fraction, on total thermal resistance and pressure drop in a micro-gap heat sink with internal micro-fins of rectangular and triangular profiles have been investigated by numerical analysis for the R-134a coolant. Furthermore, optimization of these parameters has been carried out by response surface methodology. Simulation results show that rectangular micro-fins show superior performance compared to triangular fins in reducing thermal resistance. Finally, for an optimum condition (7.1202×10-5 W pumping power, 1.2×107 Wm-2 heat flux, and 0.03 inlet void fraction), thermal resistance and pressure drop are reduced by 56.3% and 87.2%, respectively.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1568
Author(s):  
Wenjia Wang ◽  
Steven Y. Liang

This work proposed a computationally efficient analytical modeling strategy to calculate the product porosity in laser powder bed fusion (LPBF) induced by a lack-of-fusion defect, with the consideration of cap area in solidified molten pools, influence of powder bed characteristics on material properties, and un-melted powders in the lack-of-fusion portion. The powder packing pattern and powder bed void fraction were estimated by an advancing front method and the technique of image analysis. The effects of powder bed characteristics on the material properties were considered by analytical models with solid properties and powder bed void fraction as inputs. A physics-based thermal model was utilized to calculate the temperature distribution and molten pool size. The molten pool cross section in transvers direction was assumed to be dual half-elliptical. Based on this assumption and molten pool size, the geometry of the molten pool cross section with cap area was determined. The overlapping pattern of molten pools in adjacent scan tracks and layers was then obtained with given hatch space and layer thickness. The lack-of-fusion area fraction was obtained through image analysis of the overlapping pattern. The lack-of-fusion porosity was the multiplication of the lack-of-fusion area fraction and powder bed void fraction. The predictions of porosity under different process conditions were compared with experimental results of 316L stainless steel and showed a better predictive accuracy than the predictions that did not consider cap area. The proposed analytical modeling method has no numerical calculations, which ensures its low computational cost. Thus, the proposed model can be a convenient tool for the fast computation of lack-of-fusion-induced porosity and can help the quality control in LPBF.


Author(s):  
S Sindagi ◽  
R Vijayakumar ◽  
B K Saxena

The reduction of ship’s resistance is one of the most effective way to reduce emissions, operating costs and to improve EEDI. It is reported that, for slow moving vessels, the frictional drag accounts for as much as 80% of the total drag, thus there is a strong demand for the reduction in the frictional drag. The use of air as a lubricant, known as Micro Bubble Drag Reduction, to reduce that frictional drag is an active research topic. The main focus of authors is to present the current scenario of research carried out worldwide along with numerical simulation of air injection in a rectangular channel. Latest developments in this field suggests that, there is a potential reduction of 80% & 30% reduction in frictional drag in case of flat plates and ships respectively. Review suggests that, MBDR depends on Gas or Air Diffusion which depends on, Bubble size distributions and coalescence and surface tension of liquid, which in turn depends on salinity of water, void fraction, location of injection points, depth of water in which bubbles are injected. Authors are of opinion that, Microbubbles affect the performance of Propeller, which in turn decides net savings in power considering power required to inject Microbubbles. Moreover, 3D numerical investigations into frictional drag reduction by microbubbles were carried out in Star CCM+ on a channel for different flow velocities, different void fraction and for different cross sections of flow at the injection point. This study is the first of its kind in which, variation of coefficient of friction both in longitudinal as well as spanwise direction were studied along with actual localised variation of void fraction at these points. From the study, it is concluded that, since it is a channel flow and as the flow is restricted in confined region, effect of air injection is limited to smaller area in spanwise direction as bubbles were not escaping in spanwise direction.


Sign in / Sign up

Export Citation Format

Share Document