Analysis of Portal Dosimetry Patient-Specific Quality Assurance Results of 1203 Patients Treated With O-ring Linear Accelerator

2020 ◽  
Vol 108 (3) ◽  
pp. e295-e296
Author(s):  
Z. Wang ◽  
B. Yang ◽  
L. Yu ◽  
B. Wang ◽  
T. Pang ◽  
...  
2018 ◽  
Vol 18 (02) ◽  
pp. 138-149
Author(s):  
P. Niyas ◽  
K. K. Abdullah ◽  
M. P. Noufal ◽  
R. Vysakh

AbstractAimThe Electronic Portal Imaging Device (EPID), primarily used for patient setup during radiotherapy sessions is also used for dosimetric measurements. In the present study, the feasibility of EPID in both machine and patient-specific quality assurance (QA) are investigated. We have developed a comprehensive software tool for effective utilisation of EPID in our institutional QA protocol.Materials and methodsPortal Vision aS1000, amorphous silicon portal detector attached to Clinac iX—Linear Accelerator (LINAC) was used to measure daily profile and output constancy, various Multi-Leaf Collimator (MLC) checks and patient plan verification. Different QA plans were generated with the help of Eclipse Treatment Planning System (TPS) and MLC shaper software. The indigenously developed MATLAB programs were used for image analysis. Flatness, symmetry, output constancy, Field Width at Half Maximum (FWHM) and fluence comparison were studied from images obtained from TPS and EPID dosimetry.ResultsThe 3 years institutional data of profile constancy and patient-specific QA measured using EPID were found within the acceptable limits. The daily output of photon beam correlated with the output obtained through solid phantom measurements. The Pearson correlation coefficients are 0.941 (p = 0.0001), 0.888 (p = 0.0188) and 0.917 (p = 0.0007) for the years of 2014, 2015 and 2016, respectively. The accuracy of MLC for shaping complex treatment fields was studied in terms of FWHM at different portions of various fields, showed good agreement between TPS-generated and EPID-measured MLC positions. The comparison of selected patient plans in EPID with an independent 2D array detector system showed statistically significant correlation between these two systems. Percentage difference between TPS computed and EPID measured fluence maps calculated for number of patients using MATLAB code also exhibited the validity of those plans for treatment.


Author(s):  
Ernest Osei ◽  
Sarah Graves ◽  
Johnson Darko

Abstract Background: The complexity associated with the treatment planning and delivery of stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) volumetric modulated arc therapy (VMAT) plans which employs continuous dynamic modulation of dose rate, field aperture and gantry speed necessitates diligent pre-treatment patient-specific quality assurance (QA). Numerous techniques for pre-treatment VMAT treatment plans QA are currently available with the aid of several different devices including the electronic portal imager (EPID). Although several studies have provided recommendations for gamma criteria for VMAT pre-treatment QA, there are no specifics for SRS/SRT VMAT QA. Thus, we conducted a study to evaluate intracranial SRS/SRT VMAT QA to determine clinical action levels for gamma criteria based on the institutional estimated means and standard deviations. Materials and methods: We conducted a retrospective analysis of 118 EPID patient-specific pre-treatment QA dosimetric measurements of 47 brain SRS/SRT VMAT treatment plans using the integrated Varian solution (RapidArcTM planning, EPID and Portal dosimetry system) for planning, delivery and EPID QA analysis. We evaluated the maximum gamma (γmax), average gamma (γave) and percentage gamma passing rate (%GP) for different distance-to-agreement/dose difference (DTA/DD) criteria and low-dose thresholds. Results: The gamma index analysis shows that for patient-specific SRS/SRT VMAT QA with the portal dosimetry, the mean %GP is ≥98% for 2–3 mm/1–3% and Field+0%, +5% and +10% low-dose thresholds. When applying stricter spatial criteria of 1 mm, the mean %GP is >90% for DD of 2–3% and ≥88% for DD of 1%. The mean γmax ranges: 1·32 ± 1·33–2·63 ± 2·35 for 3 mm/1–3%, 1·57 ± 1·36–2·87 ± 2·29 for 2 mm/1–3% and 2·36 ± 1·83–3·58 ± 2·23 for 1 mm/1–3%. Similarly the mean γave ranges: 0·16 ± 0·06–0·19 ± 0·07 for 3 mm/1–3%, 0·21 ± 0·08–0·27 ± 0·10 for 2 mm/1–3% and 0·34 ± 0·14–0·49 ± 0·17 for 1 mm/1–3%. The mean γmax and mean γave increase with increased DTA and increased DD for all low-dose thresholds. Conclusions: The establishment of gamma criteria local action levels for SRS/SRT VMAT pre-treatment QA based on institutional resources is imperative as a useful tool for standardising the evaluation of EPID-based patient-specific SRS/SRT VMAT QA. Our data suggest that for intracranial SRS/SRT VMAT QA measured with the EPID, a stricter gamma criterion of 1 mm/2% or 1 mm/3% with ≥90% %GP could be used while still maintaining an in-control QA process with no extra burden on resources and time constraints.


2021 ◽  
Vol 32 (4) ◽  
pp. 107-115
Author(s):  
Sung Yeop Kim ◽  
Jaehyeon Park ◽  
Jae Won Park ◽  
Ji Woon Yea ◽  
Se An Oh

2012 ◽  
Vol 103 ◽  
pp. S520
Author(s):  
M. Ramachandran ◽  
T. Richardson ◽  
R. Chauhan ◽  
V. Patel ◽  
S. Chaib Rassou

2021 ◽  
Vol 9 (1) ◽  
pp. 29-33
Author(s):  
Vikram Rathore ◽  
◽  
Mr. V.K Mishra ◽  
Dr. V Choudhary ◽  
Mr. G.S. Gautam ◽  
...  

Introduction: Volumetric Arc Radiotherapy (VMAT) is an advanced technique. Calculations of VMATplans are not so accurate even with State-of-Art dose calculation algorithms due to their complexity.Hence pre-treatment patient specific Quality Assurance (QA) of each VMAT plan is required. In thepresent study Electronic Portal Imaging Device (EPID) based portal dosimetry system was used forpre-treatment patient specific QA. Material and Methods: A total of 50 patients were chosen inthis study. Verification plans of each patient were calculated for portal dosimetry then executed onthe EPID system to measure the spatial distribution of radiation dose. Calculated and measured dosedistribution were compared to evaluate Gamma Index (GI) passing criteria of Dose Difference (DD)of 3% and Distance–to-Agreement (DTA) of 3mm, Area Gamma (γ% ≤1) >95%, Average Gamma(gAve) <0.5% and Maximum Gamma (gMax) <3.5%. Results: The mean values of Area Gamma (γ%≤1) were observed to be varied from 99.14±0.23% to 99.87±0.18%. The Mean Values of AverageGamma (gAve) are found to vary from 0.19±0.05% to 0.15±0.04% and the mean values ofMaximum Gamma (gMax) found to be varied from 1.94±0.37% to 1.59±0.41%. All the plans werepassed the gamma index criteria with very good agreement. Thus the use of Portal Dosimetry forpre-treatment patient QA is found to be a very useful, quick, precise, efficient and effective pre-treatment patient specific QA tool for VMAT treatment. Conclusion: Portal Dosimetry can be utilizedfor routine use for patient specific quality assurance for Volumetric Arc Radiotherapy treatment.


2016 ◽  
Vol 43 (6Part17) ◽  
pp. 3525-3525 ◽  
Author(s):  
J Darko ◽  
A Kiciak ◽  
S Badu ◽  
G Grigorov ◽  
A Fleck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document