portal dosimetry
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 32)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 32 (4) ◽  
pp. 107-115
Author(s):  
Sung Yeop Kim ◽  
Jaehyeon Park ◽  
Jae Won Park ◽  
Ji Woon Yea ◽  
Se An Oh

2021 ◽  
Vol 16 (12) ◽  
pp. P12007
Author(s):  
D. Dudas ◽  
V. Kafka ◽  
M. Marcisovsky ◽  
G. Neue ◽  
M. Marcisovska ◽  
...  

Abstract Hybrid pixel detectors (HPD) are nowadays well known and widely used in fundamental research, e.g. in high energy physics experiments. Over the last decade, segmented semiconductor detectors have also found use in medicine. The total doses received by medical radiation detectors often reach a significant level (up to several hundreds of kGy per decade), especially in applications such as transmission portal in-vivo dosimetry. Such doses might affect detector properties. Therefore, it is necessary to evaluate their performance after absorbing a significant radiation dose. PantherPix is a novel 2D hybrid pixel detector which is designed specifically for use in radiation therapy. As was concluded in earlier studies, it is suitable for radiotherapy quality assurance (QA) and portal dosimetry. In this paper, the PantherPix radiation hardness is investigated using a 60Co source. The dependence on dose of the full depletion voltage, leakage current, detector power consumption and detector response are provided. The PantherPix radiation tolerance has been shown to be adequate for common cumulative doses delivered to radiation detectors in radiotherapy over several decades and its performance has been verified for doses up to 3000 kGy.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Anne Richter ◽  
Sonja Wegener ◽  
Kathrin Breuer ◽  
Gary Razinskas ◽  
Stefan Weick ◽  
...  

Abstract Background To implement a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans. Methods For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom. Results The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3%/2 mm) with 100% points passing and ArcCheck QA (3%/2 mm) with 99.5%. Measurement of the cumulated treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans. Conclusions For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a lower contribution of scattered dose from the collimator system.


Author(s):  
Ernest Osei ◽  
Sarah Graves ◽  
Johnson Darko

Abstract Background: The complexity associated with the treatment planning and delivery of stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) volumetric modulated arc therapy (VMAT) plans which employs continuous dynamic modulation of dose rate, field aperture and gantry speed necessitates diligent pre-treatment patient-specific quality assurance (QA). Numerous techniques for pre-treatment VMAT treatment plans QA are currently available with the aid of several different devices including the electronic portal imager (EPID). Although several studies have provided recommendations for gamma criteria for VMAT pre-treatment QA, there are no specifics for SRS/SRT VMAT QA. Thus, we conducted a study to evaluate intracranial SRS/SRT VMAT QA to determine clinical action levels for gamma criteria based on the institutional estimated means and standard deviations. Materials and methods: We conducted a retrospective analysis of 118 EPID patient-specific pre-treatment QA dosimetric measurements of 47 brain SRS/SRT VMAT treatment plans using the integrated Varian solution (RapidArcTM planning, EPID and Portal dosimetry system) for planning, delivery and EPID QA analysis. We evaluated the maximum gamma (γmax), average gamma (γave) and percentage gamma passing rate (%GP) for different distance-to-agreement/dose difference (DTA/DD) criteria and low-dose thresholds. Results: The gamma index analysis shows that for patient-specific SRS/SRT VMAT QA with the portal dosimetry, the mean %GP is ≥98% for 2–3 mm/1–3% and Field+0%, +5% and +10% low-dose thresholds. When applying stricter spatial criteria of 1 mm, the mean %GP is >90% for DD of 2–3% and ≥88% for DD of 1%. The mean γmax ranges: 1·32 ± 1·33–2·63 ± 2·35 for 3 mm/1–3%, 1·57 ± 1·36–2·87 ± 2·29 for 2 mm/1–3% and 2·36 ± 1·83–3·58 ± 2·23 for 1 mm/1–3%. Similarly the mean γave ranges: 0·16 ± 0·06–0·19 ± 0·07 for 3 mm/1–3%, 0·21 ± 0·08–0·27 ± 0·10 for 2 mm/1–3% and 0·34 ± 0·14–0·49 ± 0·17 for 1 mm/1–3%. The mean γmax and mean γave increase with increased DTA and increased DD for all low-dose thresholds. Conclusions: The establishment of gamma criteria local action levels for SRS/SRT VMAT pre-treatment QA based on institutional resources is imperative as a useful tool for standardising the evaluation of EPID-based patient-specific SRS/SRT VMAT QA. Our data suggest that for intracranial SRS/SRT VMAT QA measured with the EPID, a stricter gamma criterion of 1 mm/2% or 1 mm/3% with ≥90% %GP could be used while still maintaining an in-control QA process with no extra burden on resources and time constraints.


2021 ◽  
Author(s):  
Anne Richter ◽  
Sonja Wegener ◽  
Kathrin Breuer ◽  
Gary Razinskas ◽  
Stefan Weick ◽  
...  

Abstract Background: To develop a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans.Methods: For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom.Results: The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3%/2 mm) with 100% points passing and ArcCheck QA (3%/2 mm) with 99.5%. Measurement of the treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans.Conclusions: For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a contribution of scattered dose from the collimator system.


2021 ◽  
Vol 161 ◽  
pp. S699-S700
Author(s):  
B. Vivas Maiques ◽  
I. Olaciregui Ruiz ◽  
A. Mans ◽  
T. Janssen ◽  
J. Kass

2021 ◽  
Vol 94 (1120) ◽  
pp. 20201014
Author(s):  
James L Bedford ◽  
Ian M Hanson

Objectives: In real-time portal dosimetry, thresholds are set for several measures of difference between predicted and measured images, and signals larger than those thresholds signify an error. The aim of this work is to investigate the use of an additional composite difference metric (CDM) for earlier detection of errors. Methods: Portal images were predicted for the volumetric modulated arc therapy plans of six prostate patients. Errors in monitor units, aperture opening, aperture position and path length were deliberately introduced into all 180 segments of the treatment plans, and these plans were delivered to a water-equivalent phantom. Four different metrics, consisting of central axis signal, mean image value and two image difference measures, were used to identify errors, and a CDM was added, consisting of a weighted power sum of the individual metrics. To optimise the weights of the CDM and to evaluate the resulting timeliness of error detection, a leave-pair-out strategy was used. For each combination of four patients, the weights of the CDM were determined by an exhaustive search, and the result was evaluated on the remaining two patients. Results: The median segment index at which the errors were identified was 87 (range 40–130) when using all of the individual metrics separately. Using a CDM as well as multiple separate metrics reduced this to 73 (35–95). The median weighting factors of the four metrics constituting the composite were (0.15, 0.10, 0.15, 0.00). Due to selection of suitable threshold levels, there was only one false positive result in the six patients. Conclusion: This study shows that, in conjunction with appropriate error thresholds, use of a CDM is able to identify increased image differences around 20% earlier than the separate measures. Advances in knowledge: This study shows the value of combining difference metrics to allow earlier detection of errors during real-time portal dosimetry for volumetric modulated arc therapy treatment.


2021 ◽  
Vol 9 (1) ◽  
pp. 29-33
Author(s):  
Vikram Rathore ◽  
◽  
Mr. V.K Mishra ◽  
Dr. V Choudhary ◽  
Mr. G.S. Gautam ◽  
...  

Introduction: Volumetric Arc Radiotherapy (VMAT) is an advanced technique. Calculations of VMATplans are not so accurate even with State-of-Art dose calculation algorithms due to their complexity.Hence pre-treatment patient specific Quality Assurance (QA) of each VMAT plan is required. In thepresent study Electronic Portal Imaging Device (EPID) based portal dosimetry system was used forpre-treatment patient specific QA. Material and Methods: A total of 50 patients were chosen inthis study. Verification plans of each patient were calculated for portal dosimetry then executed onthe EPID system to measure the spatial distribution of radiation dose. Calculated and measured dosedistribution were compared to evaluate Gamma Index (GI) passing criteria of Dose Difference (DD)of 3% and Distance–to-Agreement (DTA) of 3mm, Area Gamma (γ% ≤1) >95%, Average Gamma(gAve) <0.5% and Maximum Gamma (gMax) <3.5%. Results: The mean values of Area Gamma (γ%≤1) were observed to be varied from 99.14±0.23% to 99.87±0.18%. The Mean Values of AverageGamma (gAve) are found to vary from 0.19±0.05% to 0.15±0.04% and the mean values ofMaximum Gamma (gMax) found to be varied from 1.94±0.37% to 1.59±0.41%. All the plans werepassed the gamma index criteria with very good agreement. Thus the use of Portal Dosimetry forpre-treatment patient QA is found to be a very useful, quick, precise, efficient and effective pre-treatment patient specific QA tool for VMAT treatment. Conclusion: Portal Dosimetry can be utilizedfor routine use for patient specific quality assurance for Volumetric Arc Radiotherapy treatment.


Author(s):  
Krzysztof Ślosarek ◽  
Dominika Plaza ◽  
Aleksandra Nas ◽  
Marta Reudelsdorf ◽  
Jacek Wendykier ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document