scholarly journals Method of fundamental solutions in micromechanics of elastic random structure composites

2017 ◽  
Vol 124 ◽  
pp. 135-150 ◽  
Author(s):  
Valeriy A. Buryachenko
Author(s):  
Valeriy A. Buryachenko

One considers a linear elastic composite material (CM, [1]), which consists of a homogeneous matrix containing the random set of heterogeneities. An operator form of the general integral equation (GIE, [2–6]) connecting the stress and strain fields in the point being considered and the surrounding points are obtained for the random fields of inclusions in the infinite media. The new GIE is presented in a general form of perturbations introduced by the heterogeneities and defined at the inclusion interface by the unknown fields of both the displacement and traction. The method of obtaining of the GIE is based on a centering procedure of subtraction from both sides of a new initial integral equation their statistical averages obtained without any auxiliary assumptions such as the effective field hypothesis (EFH), which is implicitly exploited in the known centering methods. One proves the absolute convergence of the proposed GIEs, and some particular cases, asymptotic representations, and simplifications of proposed GIEs are presented for the particular constitutive equations of linear thermoelasticity. In particular, we use a meshfree method [7] based on fundamental solutions basis functions for a transmission problem in linear elasticity. Numerical results were obtained for 2D CMs reinforced by noncanonical inclusions.


Author(s):  
I Pérez-Arjona ◽  
L Godinho ◽  
V Espinosa

Abstract The method of fundamental solutions has been applied to evaluate the influence of fish models geometrical features on the target strength (TS) directivity and TS frequency response of swimbladdered fish. Simplified models were considered for two fish species: gilt-head sea bream (Sparus aurata, Linnaeus 1758) and Atlantic salmon (Salmo salar, Linnaeus 1758), and different geometrical details of their morphology were studied, such as backbone presence, and its curvature or the inclusion of vertebrae modulation. Swimbladder shape and tilt, together with the inclusion of backbone (and its realistic curvature) for dorsal measurements were the most important features for proper estimation of mean TS. The estimation of mean TS is considered including the effect of fish tilt, the echosounder frequency, and the fish-to-transducer distance.


Sign in / Sign up

Export Citation Format

Share Document