Development of non-dimensional two phase heat transfer correlation based on physics of boiling

2020 ◽  
Vol 156 ◽  
pp. 106433
Author(s):  
Rajiva Lochan Mohanty ◽  
Mihir Kumar Das
Author(s):  
Joshua D. Sole ◽  
Bradley J. Shelofsky ◽  
Robert P. Scaringe ◽  
Gregory S. Cole

Electronics of all types, particularly those in the military aviation arena, are decreasing in size while at the same time increasing in power. As a result, newer high-heat-flux electronic components are exceeding the cooling capabilities of conventional single-phase military aviation coldplates and coolants. It is for this reason that we have been investigating new methods to cool the next generation of high-heat-flux military aviation electronics. In this work, a novel method of inducing two-phase conditions within a microchannel heat exchanger has been developed and demonstrated. Micro-orifices placed upstream of each microchannel in a microchannel heat exchanger not only cause an improvement in flow distribution, but can also induce cavitation in the incoming subcooled refrigerant and result in favorable two-phase flow regimes for enhanced heat transfer. In this study, R-134a is used as the coolant in the cavitation enhanced microchannel heat exchanger (CEMC-HX) which has been integrated into a vapor compression refrigeration system. Multiple micro-orifice geometries combined with a fixed microchannel geometry (nominally 250 μm × 250 μm) were investigated over a range of applied base heat fluxes (10–100 W/cm2) and mass fluxes (500–1000 kg/m2-s). Two-phase heat transfer coefficients exceeding 100,000 W/m2-K at refrigerant qualities of less than 5% have been demonstrated due to the achievement of preferential, cavitation-induced, flow regimes such as annular flow. To the author’s knowledge, this is the highest heat transfer coefficient ever reported in the literature for R-134a. Additionally, a four term two-phase heat transfer correlation was developed that achieved a mean absolute error (MAE) of 25.5%.


2019 ◽  
Vol 56 (4) ◽  
pp. 1087-1098
Author(s):  
Yushazaziah Mohd-Yunos ◽  
Normah Mohd-Ghazali ◽  
Maziah Mohamad ◽  
Agus Sunjarianto Pamitran ◽  
Jong-Taek Oh

Equipment ◽  
2006 ◽  
Author(s):  
Leonid L. Vasiliev ◽  
A. Zhuravlyov ◽  
A. Shapovalov ◽  
L. L. Vasiliev, Jr

2005 ◽  
Vol 127 (10) ◽  
pp. 1106-1114 ◽  
Author(s):  
Ali Koşar ◽  
Chih-Jung Kuo ◽  
Yoav Peles

Boiling flow of deionized water through 227μm hydraulic diameter microchannels with 7.5μm wide interconnected reentrant cavities at 47 kPa exit pressure has been investigated. Average two-phase heat transfer coefficients have been obtained over effective heat fluxes ranging from 28 to 445W∕cm2 and mass fluxes from 41 to 302kg∕m2s. A map is developed that divides the data into two regions where the heat transfer mechanisms are nucleation or convective boiling dominant. The map is compared to similar atmospheric exit pressure data developed in a previous study. A boiling mechanism transition criterion based on the Reynolds number and the Kandlikar k1 number is proposed.


Sign in / Sign up

Export Citation Format

Share Document