heating section
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Konstantin Dobroselsky ◽  
Anatoliy Lebedev ◽  
Alexey Safonov ◽  
Sergey Starinskiy ◽  
Vladimir Dulin

The treatment of the hydrophobic properties of solid surfaces is considered as a passive method to reduce the drag in water flows (Rothstein, 2010) and to potentially affect the flow separation and vortex shedding (Sooraj et al., 2020). The manufacturing of surfaces with micro- and nano-scale roughness allows to extend the hydrophobicity towards superhydrophobicity with the contact angle close to 180°. In such conditions the solid surface is not wetted completely and the air-water interphase partially remains on the surface texture. This results in so-called flow slip effect. Therefore, a local phase transition during the flow cavitation or gas effervescence in near-wall low-pressure regions may additionally affect the slip effect for hydrophobic surfaces. The present work is focused on the comparison between cavitating and noncavitating flows around circular cylinders with lateral sectors with hydrophobic and non-hydrophobic coatings. The experiments are performed in a water tunnel, which consists of a water outgassing and cooling/heating section, honeycomb, contraction section, test section and diffuser. The water flow is driven by an electric pump, providing a bulk velocity up to 10 m/s in the transparent test section with 1 m length and 80×150 mm2 rectangular cross-section. The facility is equipped with an ultrasonic flowmeter, temperature and pressure sensors. Besides, the static pressure inside the water tunnel can be varied by using a special shaft section. The measurements are performed by using high-repetition and low-repetition PIV systems. The former is used for the analysis of large-scale flow dynamics in the wake region, whereas the latter one is used for high-resolution measurements in near-wall regions by using a long-distance microscope. The Reynolds number based on the bulk velocity of the flow, diameter of the cylinders (D = 26 mm) and kinematic viscosity of the water is varied up to 2×105..


2021 ◽  
Vol 2 (446) ◽  
pp. 65-71
Author(s):  
N. O. Appazov ◽  
B. M. Diyarova ◽  
B. M. Bazarbayev ◽  
T. Assylbekkyzy ◽  
S. A. Kanzhar ◽  
...  

This article examines the effect of lignosulfonate binding of rice waste to oil waste to obtain activated carbon. Lignosulfonate was added to the mixture to produce briquetted activated carbon by processing rice residue (husk and straw) and oil sludge together. The mixture was carbonized and activated in a BR-12 NFT series high-temperature vacuum tube furnace with a length of 300 mm and a diameter of 60 mm and a heating section length of 200 mm in a quartz glass tube. Briquettes obtained by adding rice waste (husks and straw), oil sludge and lignosulfonate were placed in the kiln. Carbonation was carried out at a temperature of 500°C, activation was carried out at a temperature of 850°C in a ratio of 2: 1 with water vapor. The effect of the relationship of the addition of lignosulfonate binder to rice residue and oil sludge on the product properties was studied. The optimal ratio of co-treatment of the mixture was found in the ratio of rice residue: oil sludge: lignosulfonate = 9: 1: 2 (by weight). The adsorption activity of the obtained product on iodine, the total volume of pores on water, the mass fraction of moisture, the adsorption activity on methylene blue and the bulk density were studied. Activated carbon obtained from both rice straw and rice husk has high sorption properties. According to the results of experimental studies, activated carbon obtained by adding lignosulfonate to rice straw and oil sludge in a ratio of 9: 1: 2 corresponds to the brands BAС-A, WAC, BAC-Au.


2021 ◽  
Vol 13 (4) ◽  
pp. 290-295
Author(s):  
E. A. Sukhorukova ◽  
N. N. Trifonov ◽  
S. P. Kolpakov

In the thermal circuits of domestic steam turbines, mixing-type low-pressure heaters (LPH) with free-flow jet water distribution and counter-flow of water and steam are widely used. The choice of the counterflow variant of the media movement ensures the most efficient heat transfer. However, the technical problem of ensuring reliable operation of LPH in the entire range of design loads of TPP and NPP power units is still relevant.During the commissioning and operation of mixing-type LPH in 800÷1200 MW turbines of TPP and NPP, the presence of metal knocks in the zone of the check valve, hydraulic shocks in the heating section were revealed. A priori, these phenomena indicated design flaws in LPH or manufacturing defects in their production. Research carried out by NPO CKTI specialists showed that periodic hydraulic shocks in the heating section and metal knocks occur as a result of uneven distribution around the circumference of the main condensate and steam supply. This leads to a breakdown of the check valve and the destruction of perforated plates and off-design heating of water in the volume of the annular LPH water chamber. To clarify the causes of the damage, develop recommendations for the reconstruction of the apparatus and further account for the design, two series of experimental studies were carried out on mixing-type heaters of 800 MW turbine units PNSV-2000-1 and PNSV-2000-2 manufactured at PJSC Krasny Kotelshchik. The purpose of the experimental studies was to determine the change in the water level in the water chamber and the heating of the main condensate in the elements of the heating compartment during normal operation of the power unit at loads of 400÷850 MW. Based on the results of the research, the method for calculating the mixing-type LPH has been refined, taking into account the revealed non-uniformity of water heating in the water chamber, recommendations for their reconstruction have been developed and implemented. 


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 572
Author(s):  
Ching-Jenq Ho ◽  
Shih-Ming Lin ◽  
Chi-Ming Lai

This study explores the effects of pipe wall properties (thermal conductivity k and wall thickness tw) on the heat transfer performance of a rectangular thermosyphon with a phase change material (PCM) suspension and a geometric configuration (aspect ratio = 1; dimensionless heating section length = 0.8; dimensionless relative elevation between the cooling and the heating sections = 2) that ensures the optimum heat transfer efficiency in the cooling section. The following parameter ranges are studied: the dimensionless loop wall thickness (0 to 0.5), wall-to-fluid thermal conductivity ratio (0.1 to 100), modified Rayleigh number (1010 to 1011), and volumetric fraction of PCM particles (0 to 10%). The results show that appropriate selection of k and tw can lead to improved heat transfer effectiveness in the cooling section of the PCM suspension-containing rectangular thermosyphon.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 46
Author(s):  
Prajakta Nakate ◽  
Domenico Lahaye ◽  
Cornelis Vuik ◽  
Marco Talice

The emissions from the industrial furnaces impact the environment. Among the various factories, those having anode baking furnaces are working on reducing the pollutant emissions. The aerodynamics in the furnace influences the emissions due to the high dependence of combustion and radiation phenomena on the mixing characteristics. Therefore, this paper aims to establish the numerical simulation results for the three-dimensional turbulent flow in a single section of an anode baking furnace with a high rate of fuel injection. The stabilized non-linear finite element approach on the Reynolds-averaged Navier-Stokes (RANS) equation is used with COMSOLMultiphysics. The turbulent viscosity ratio is highly sensitive to the mesh for the standard k-ϵ model. The requirements of the Cartesian and refined mesh near the jet development region is explained. The comparison of meshes generated by two meshing tools namely cfMesh and COMSOL Multiphysics default Mesher is carried out. The high numerical diffusion in the flow models due to the coarser mesh leads to convergence but deficit the precision in the results. This paper shows that the mesh generated by cfMesh with flow aligned refinement combined with the non-linear finite element solver in COMSOL Multiphysics proves to provide accurate results of turbulent quantities.


2021 ◽  
pp. 348-348
Author(s):  
Li Cong ◽  
Huang Ying ◽  
Tan Jianping

Boiling-condensation heat transfer in ultrathin flat heat pipes are complicated and difficult to observe. In this study, a visualization experiment and simulation analysis in an ultrathin limited enclosed space were carried out. Width of the ultrathin enclosed space was 1 mm, with anhydrous ethanol as the working medium. The enclosed space was oriented vertically with the heating section on the bottom and the cooling section on the top. Flow characteristics of the anhydrous ethanol were photographed using a high-speed camera through the quartz cover. The boiling-condensation heat transfer and fluid flow in the limited enclosed space were simulated. Effective heat transfer coefficient calculated based on the experimental data varied from 1.0 to 1.1 W/?C, while that of the inner wall obtained by the simulation varied within the range of 1.068-1.076 W/?C. The maximum error was 2.9%, which verified the reliability of the simulation results. By analyzing the pressure change in condensation section, it was found that the boiling-condensation heat released in the enclosed space changed periodically, because of the growth and bursting of bubbles and falling of the working medium due to gravity. Restricted by the thickness, the bubbles produced by boiling of the working medium grew in flat and irregular shapes, promoting the upward movement of the rest of the liquid working medium, and a liquid film was formed at the heated inner surface for evaporation heat transfer, which enhanced the heat transfer capacity of the heating section.


2020 ◽  
Vol 112 ◽  
pp. 36-53
Author(s):  
Conrad M. Sala ◽  
Grzegorz Kowaluk

An impact of surface spray and pressing temperature on the properties of high density fibreboards. The objective of this study was to investigate the effects of chosen process parameters: water spray amount and 3rd press heating section temperature on the mechanical, physical properties of ultrathin (2.5 mm) industrial high-density fibreboards (HDF) produced with 5% of recovered HDF (rHDF) addition. Boards were produced with 0 ml/m2 – V0, 8 ml/m2 – V8, 16 ml/m2 – V16 and 32 ml/m2 – V32 of surface water spray addition on top and bottom side in industrial hot continuous press with 3rd heating section temperature setups: 145oC (V45), 160oC (V60) and 175oC (V75). After variants examination with different surface water spray amount it was found, that there is roughly linear positive correlation for MOR increase for up to 10% comparing V0 to V32 and for surface roughness decrease for up to 31%. Surface water spray improved IB for up to 21% while WA decreased for up to 9% for V8 comparing to HDF produced without surface water spray addition. According to 3rd press heating section temperature influence – MOR and MOE has increased while other mechanical properties worsen with pressing temperature increase – drop in IB and SS.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Mohamed Sannad ◽  
Abourida Btissam ◽  
Belarche Lahoucine

This article consists of a numerical study of natural convection heat transfer in three-dimensional cavity filled with nanofluids. This configuration is heated by a partition maintained at a hot constant and uniform temperature TH. The right and left vertical walls are kept at a cold temperature TC while the rest is adiabatic. The fluid flow and heat transfer in the cavity are studied for different sets of the governing parameters, namely, the nanofluid type, the Rayleigh number Ra = 103, 104, 105, and 106, and the volume fraction Ф varying between Ф = 0 and 0.1. The obtained results show a positive effect of the volume fraction and the Rayleigh number on the heat transfer improvement. The analysis of the results related to the heat transfer shows that the copper-based nanofluid guarantees the best thermal transfer. In addition, the increase of the heating section size and Ra leads to an increased amount of heat. Similarly, increasing the volume fraction improves the intensification of the flow and increases the heat exchange.


2020 ◽  
Vol 10 (18) ◽  
pp. 6211
Author(s):  
Ching-Jenq Ho ◽  
Shih-Ming Lin ◽  
Rong-Horng Chen ◽  
Chi-Ming Lai

This article considers the problem of natural heat transfer in a rectangular thermosiphon to investigate the effects of wall properties (thickness and thermal conductivity) on the heat-transfer characteristics of phase-change-material (PCM) suspension flow. The following parameter ranges were investigated: dimensionless loop-wall thickness, 0–0.5; wall-to-fluid thermal-conductivity ratio, 0.1–100; modified Rayleigh number, 1010–1011; and volumetric fraction of PCM particles, 0–10%. From numerical simulations via the finite-volume approach, it was found that using a pipe with appropriate wall thickness and thermal conductivity containing PCM suspensions for the heating section of a rectangular thermosiphon can effectively control the maximal temperature.


Sign in / Sign up

Export Citation Format

Share Document