Enhancement of critical heat flux (CHF) in pool boiling with anodized copper surfaces

2022 ◽  
Vol 172 ◽  
pp. 107338
Author(s):  
Atul Ranjan ◽  
Israr Ahmad ◽  
Rinku Kumar Gouda ◽  
Manabendra Pathak ◽  
Mohd Kaleem Khan
Author(s):  
Amir F. Ali ◽  
Mohamed S. El-Genk

Pool boiling experiments investigated the effect of inclination angle on the Critical Heat Flux (CHF) for saturation boiling of PF-5060 dielectric liquid on MicroPorous Copper (MPC) surfaces of different thicknesses (80 to 230 μm). The morphology of the surfaces, deposited using electrochemical processes, vary with the thickness, and hence CHF. The inclination angles investigated are 0° (upward facing), 60°, 90° (vertical), 120°, 150°, 160°, 170° and 180° (downward facing). CHF decreases with decreasing MPC thickness and/or increasing inclination angle. The CHF values in the upward facing orientation are 39%–67% higher than on smooth, polished Cu. For all MPC surfaces, CHF values in the downward facing orientation are ∼ 28% of those in the upward facing orientation (0°). The developed CHF correlation accounts for the effects of MPC thickness and inclination angle and is in agreement with experimental data to within ± 8%.


Author(s):  
Youngsup Song ◽  
Yangying Zhu ◽  
Daniel J. Preston ◽  
H. Jeremy Cho ◽  
Zhengmao Lu ◽  
...  

2019 ◽  
Author(s):  
Samson Semenovich Kutateladze ◽  
G.I. Bobrovich ◽  
I. I. Gogonin ◽  
N.N. Mamontova ◽  
V.N. Moskvicheva

2004 ◽  
Vol 11 (2) ◽  
pp. 133-150 ◽  
Author(s):  
M. B. Dizon ◽  
J. Yang ◽  
F. B. Cheung ◽  
J. L. Rempe ◽  
K. Y. Suh ◽  
...  

1996 ◽  
Vol 118 (1) ◽  
pp. 103-109 ◽  
Author(s):  
W. R. McGillis ◽  
V. P. Carey

The Marangoni effect on the critical heat flux (CHF) condition in pool boiling of binary mixtures has been identified and its effect has been quantitatively estimated with a modified model derived from hydrodynamics. The physical process of CHF in binary mixtures, and models used to describe it, are examined in the light of recent experimental evidence, accurate mixture properties, and phase equilibrium revealing a correlation to surface tension gradients and volatility. A correlation is developed from a heuristic model including the additional liquid restoring force caused by surface tension gradients. The CHF condition was determined experimentally for saturated methanol/water, 2-propanol/water, and ethylene glycol/water mixtures, over the full range of concentrations, and compared to the model. The evidence in this study demonstrates that in a mixture with large differences in surface tension, there is an additional hydrodynamic restoring force affecting the CHF condition.


2021 ◽  
Vol 190 ◽  
pp. 116849
Author(s):  
Seyed Moein Rassoulinejad-Mousavi ◽  
Firas Al-Hindawi ◽  
Tejaswi Soori ◽  
Arif Rokoni ◽  
Hyunsoo Yoon ◽  
...  

1998 ◽  
Vol 33 (5-6) ◽  
pp. 481-488 ◽  
Author(s):  
T. Inoue ◽  
N. Kawae ◽  
M. Monde

Author(s):  
Muhamad Zuhairi Sulaiman ◽  
Masahiro Takamura ◽  
Kazuki Nakahashi ◽  
Tomio Okawa

Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.


Sign in / Sign up

Export Citation Format

Share Document