Internal thermal source effects on convection heat transfer in a two-dimensional porous medium: A lattice Boltzmann study

2022 ◽  
Vol 173 ◽  
pp. 107416
Author(s):  
Yan-Yan Feng ◽  
Cun-Hai Wang ◽  
Yong Xiang ◽  
Xin-Xin Zhang
2011 ◽  
Vol 322 ◽  
pp. 61-67 ◽  
Author(s):  
Jiu Gu Shao ◽  
Yang Liu ◽  
You Sheng Xu

The problem of the natural convection heat transfer for phase-change in a square filled with heterogeneously porous medium is solved by lattice Boltzmann method. The lattice Boltzmann equation is governed by the heat conduction equation combined with enthalpy formation. The velocity of liquid part is fully coupled with the temperature distribution through relaxation time. It is found that the high Ra number has significantly impact on the heat transfer and convection, but the low Ra number has little influence on the natural convection. The porosity of the middle porous medium is nothing to do with the heat transfer and convection. The result is of great importance to engineering interest and also provides a new solution to phase transition.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Jinhu Zhao ◽  
Liancun Zheng ◽  
Xinxin Zhang ◽  
Fawang Liu ◽  
Xuehui Chen

This paper investigates natural convection heat transfer of generalized Oldroyd-B fluid in a porous medium with modified fractional Darcy's law. Nonlinear coupled boundary layer governing equations are formulated with time–space fractional derivatives in the momentum equation. Numerical solutions are obtained by the newly developed finite difference method combined with L1-algorithm. The effects of involved parameters on velocity and temperature fields are presented graphically and analyzed in detail. Results indicate that, different from the classical result that Prandtl number only affects the heat transfer, it has remarkable influence on both the velocity and temperature boundary layers, the average Nusselt number rises dramatically in low Prandtl number, but increases slowly with the augment of Prandtl number. The maximum value of velocity profile and the thickness of momentum boundary layer increases with the augment of porosity and Darcy number. Moreover, the relaxation fractional derivative parameter accelerates the convection flow and weakens the elastic effect significantly, while the retardation fractional derivative parameter slows down the motion and strengthens the elastic effect.


2021 ◽  
Author(s):  
Khadija Tul Kubra Lehre ◽  
R. McKibbin ◽  
Sana Ullah Ullah Lehre ◽  
Muhammad Khalid ◽  
Winston L. Sweatman

Sign in / Sign up

Export Citation Format

Share Document