scholarly journals Bivariate functions of bounded variation: Fractal dimension and fractional integral

2020 ◽  
Vol 31 (2) ◽  
pp. 294-309 ◽  
Author(s):  
S. Verma ◽  
P. Viswanathan
Fractals ◽  
2018 ◽  
Vol 26 (05) ◽  
pp. 1850063 ◽  
Author(s):  
XING LIU ◽  
JUN WANG ◽  
HE LIN LI

This paper mainly discusses the continuous functions whose fractal dimension is 1 on [Formula: see text]. First, we classify continuous functions into unbounded variation and bounded variation. Then we prove that the fractal dimension of both continuous functions of bounded variation and their fractional integral is 1. As for continuous functions of unbounded variation, we solve several special types. Finally, we give the example of one-dimensional continuous function of unbounded variation.


Fractals ◽  
2017 ◽  
Vol 25 (03) ◽  
pp. 1750035 ◽  
Author(s):  
XIAO ER WU ◽  
JUN HUAI DU

The present paper investigates fractal dimension of Hadamard fractional integral of continuous functions of bounded and unbounded variation. It has been proved that Hadamard fractional integral of continuous functions of bounded variation still is continuous functions of bounded variation. Definition of an unbounded variation point has been given. We have proved that Box dimension and Hausdorff dimension of Hadamard fractional integral of continuous functions of bounded variation are [Formula: see text]. In the end, Box dimension and Hausdorff dimension of Hadamard fractional integral of certain continuous functions of unbounded variation have also been proved to be [Formula: see text].


Fractals ◽  
2017 ◽  
Vol 25 (05) ◽  
pp. 1750048 ◽  
Author(s):  
Y. S. LIANG

The present paper mainly investigates the definition and classification of one-dimensional continuous functions on closed intervals. Continuous functions can be classified as differentiable functions and nondifferentiable functions. All differentiable functions are of bounded variation. Nondifferentiable functions are composed of bounded variation functions and unbounded variation functions. Fractal dimension of all bounded variation continuous functions is 1. One-dimensional unbounded variation continuous functions may have finite unbounded variation points or infinite unbounded variation points. Number of unbounded variation points of one-dimensional unbounded variation continuous functions maybe infinite and countable or uncountable. Certain examples of different one-dimensional continuous functions have been given in this paper. Thus, one-dimensional continuous functions are composed of differentiable functions, nondifferentiable continuous functions of bounded variation, continuous functions with finite unbounded variation points, continuous functions with infinite but countable unbounded variation points and continuous functions with uncountable unbounded variation points. In the end of the paper, we give an example of one-dimensional continuous function which is of unbounded variation everywhere.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Tomasz Zając

We study the existence of monotonic and nonnegative solutions of a nonlinear quadratic Volterra-Stieltjes integral equation in the space of real functions being continuous on a bounded interval. The main tools used in our considerations are the technique of measures of noncompactness in connection with the theory of functions of bounded variation and the theory of Riemann-Stieltjes integral. The obtained results can be easily applied to the class of fractional integral equations and Volterra-Chandrasekhar integral equations, among others.


Author(s):  
Silvestru Sever Dragomir

Let g be a strictly increasing function on a , b , having a continuous derivative g′ on a , b . For the Lebesgue integrable function f : a , b → C , we define the k-g-left-sided fractional integral of f by S k , g , a + f x = ∫ a x k g x - g t g ′ t f t d t , x ∈ a , b and the k-g-right-sided fractional integral of f by S k , g , b - f x = ∫ x b k g t - g x g ′ t f t d t , x ∈ [ a , b ) , where the kernel k is defined either on 0 , ∞ or on 0 , ∞ with complex values and integrable on any finite subinterval. In this paper we establish some Ostrowski and trapezoid type inequalities for the k-g-fractional integrals of functions of bounded variation. Applications for mid-point and trapezoid inequalities are provided as well. Some examples for a general exponential fractional integral are also given.


Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950065
Author(s):  
BIN YU ◽  
TAO ZHANG ◽  
LEI YAO ◽  
WEI ZHAO

In this paper, we make research on composition of continuous functions with Box dimension one of bounded variation or unbounded variation on [Formula: see text]. It has been proved that one-dimensional continuous functions must be one of functions with bounded variation, or functions with finite unbounded variation points, or functions with infinite unbounded variation points on [Formula: see text]. Based on discussion of one-dimensional continuous functions, fractal dimension, such as Box dimension, of Riemann–Liouville (R-L) fractional integral of those functions have been calculated. We get an important conclusion that Box dimension of R-L fractional integral of any one-dimensional continuous functions of any positive orders still is one. R-L fractional derivative of certain one-dimensional continuous functions has been explored elementary.


Sign in / Sign up

Export Citation Format

Share Document