COMPOSITION OF ONE-DIMENSIONAL CONTINUOUS FUNCTIONS AND THEIR RIEMANN–LIOUVILLE FRACTIONAL INTEGRAL

Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950065
Author(s):  
BIN YU ◽  
TAO ZHANG ◽  
LEI YAO ◽  
WEI ZHAO

In this paper, we make research on composition of continuous functions with Box dimension one of bounded variation or unbounded variation on [Formula: see text]. It has been proved that one-dimensional continuous functions must be one of functions with bounded variation, or functions with finite unbounded variation points, or functions with infinite unbounded variation points on [Formula: see text]. Based on discussion of one-dimensional continuous functions, fractal dimension, such as Box dimension, of Riemann–Liouville (R-L) fractional integral of those functions have been calculated. We get an important conclusion that Box dimension of R-L fractional integral of any one-dimensional continuous functions of any positive orders still is one. R-L fractional derivative of certain one-dimensional continuous functions has been explored elementary.

Fractals ◽  
2021 ◽  
Author(s):  
H. B. GAO ◽  
Y. S. LIANG ◽  
W. XIAO

In this paper, we mainly investigate relationship between fractal dimension of continuous functions and orders of Weyl fractional integrals. If a continuous function defined on a closed interval is of bounded variation, its Weyl fractional integral must still be a continuous function with bounded variation. Thus, both its Weyl fractional integral and itself have Box dimension one. If a continuous function satisfies Hölder condition, we give estimation of fractal dimension of its Weyl fractional integral. If a Hölder continuous function is equal to 0 on [Formula: see text], a better estimation of fractal dimension can be obtained. When a function is continuous on [Formula: see text] and its Weyl fractional integral is well defined, a general estimation of upper Box dimension of Weyl fractional integral of the function has been given which is strictly less than two. In the end, it has been proved that upper Box dimension of Weyl fractional integrals of continuous functions is no more than upper Box dimension of original functions.


Fractals ◽  
2019 ◽  
Vol 27 (07) ◽  
pp. 1950114
Author(s):  
Y. S. LIANG ◽  
N. LIU

Fractal dimensions of Weyl–Marchaud fractional derivative of certain continuous functions are investigated in this paper. Upper Box dimension of Weyl–Marchaud fractional derivative of certain continuous functions with Box dimension one has been proved to be no more than the sum of one and its order.


Fractals ◽  
2018 ◽  
Vol 26 (05) ◽  
pp. 1850063 ◽  
Author(s):  
XING LIU ◽  
JUN WANG ◽  
HE LIN LI

This paper mainly discusses the continuous functions whose fractal dimension is 1 on [Formula: see text]. First, we classify continuous functions into unbounded variation and bounded variation. Then we prove that the fractal dimension of both continuous functions of bounded variation and their fractional integral is 1. As for continuous functions of unbounded variation, we solve several special types. Finally, we give the example of one-dimensional continuous function of unbounded variation.


Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050123
Author(s):  
YONG-SHUN LIANG

In the present paper, fractal dimension and properties of fractional calculus of certain continuous functions have been investigated. Upper Box dimension of the Riemann–Liouville fractional integral of continuous functions satisfying the Hölder condition of certain positive orders has been proved to be decreasing linearly. If sum of order of the Riemann–Liouville fractional integral and the Hölder condition equals to one, the Riemann–Liouville fractional integral of the function will be Lipschitz continuous. If the corresponding sum is strictly larger than one, the Riemann–Liouville fractional integral of the function is differentiable. Estimation of fractal dimension of the derivative function has also been discussed. Finally, the Riemann–Liouville fractional derivative of continuous functions satisfying the Hölder condition exists when order of the Riemann–Liouville fractional derivative is smaller than order of the Hölder condition. Upper Box dimension of the function has been proved to be increasing at most linearly.


Fractals ◽  
2017 ◽  
Vol 25 (03) ◽  
pp. 1750035 ◽  
Author(s):  
XIAO ER WU ◽  
JUN HUAI DU

The present paper investigates fractal dimension of Hadamard fractional integral of continuous functions of bounded and unbounded variation. It has been proved that Hadamard fractional integral of continuous functions of bounded variation still is continuous functions of bounded variation. Definition of an unbounded variation point has been given. We have proved that Box dimension and Hausdorff dimension of Hadamard fractional integral of continuous functions of bounded variation are [Formula: see text]. In the end, Box dimension and Hausdorff dimension of Hadamard fractional integral of certain continuous functions of unbounded variation have also been proved to be [Formula: see text].


Fractals ◽  
2019 ◽  
Vol 27 (05) ◽  
pp. 1950084 ◽  
Author(s):  
YONG-SHUN LIANG

In this paper, fractal dimensions of fractional calculus of continuous functions defined on [Formula: see text] have been explored. Continuous functions with Box dimension one have been divided into five categories. They are continuous functions with bounded variation, continuous functions with at most finite unbounded variation points, one-dimensional continuous functions with infinite but countable unbounded variation points, one-dimensional continuous functions with uncountable but zero measure unbounded variation points and one-dimensional continuous functions with uncountable and non-zero measure unbounded variation points. Box dimension of Riemann–Liouville fractional integral of any one-dimensional continuous functions has been proved to be with Box dimension one. Continuous functions on [Formula: see text] are divided as local fractal functions and fractal functions. According to local structure and fractal dimensions, fractal functions are composed of regular fractal functions, irregular fractal functions and singular fractal functions. Based on previous work, upper Box dimension of any continuous functions has been proved to be no less than upper Box dimension of their Riemann–Liouville fractional integral. Fractal dimensions of Riemann–Liouville fractional derivative of certain continuous functions have been investigated elementary.


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050005
Author(s):  
JIA YAO ◽  
YING CHEN ◽  
JUNQIAO LI ◽  
BIN WANG

In this paper, we make research on Katugampola and Hadamard fractional integral of one-dimensional continuous functions on [Formula: see text]. We proved that Katugampola fractional integral of bounded and continuous function still is bounded and continuous. Box dimension of any positive order Hadamard fractional integral of one-dimensional continuous functions is one.


Fractals ◽  
2017 ◽  
Vol 25 (05) ◽  
pp. 1750048 ◽  
Author(s):  
Y. S. LIANG

The present paper mainly investigates the definition and classification of one-dimensional continuous functions on closed intervals. Continuous functions can be classified as differentiable functions and nondifferentiable functions. All differentiable functions are of bounded variation. Nondifferentiable functions are composed of bounded variation functions and unbounded variation functions. Fractal dimension of all bounded variation continuous functions is 1. One-dimensional unbounded variation continuous functions may have finite unbounded variation points or infinite unbounded variation points. Number of unbounded variation points of one-dimensional unbounded variation continuous functions maybe infinite and countable or uncountable. Certain examples of different one-dimensional continuous functions have been given in this paper. Thus, one-dimensional continuous functions are composed of differentiable functions, nondifferentiable continuous functions of bounded variation, continuous functions with finite unbounded variation points, continuous functions with infinite but countable unbounded variation points and continuous functions with uncountable unbounded variation points. In the end of the paper, we give an example of one-dimensional continuous function which is of unbounded variation everywhere.


Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050030 ◽  
Author(s):  
YONG-SHUN LIANG

In this work, we consider fractal dimension such as Box dimension, of Weyl fractional integral of certain continuous functions. Upper Box dimension of Weyl fractional integral of continuous functions satisfying [Formula: see text]-order Hölder condition of positive order [Formula: see text] is no more than both [Formula: see text] and [Formula: see text]. Furthermore, it is no more than [Formula: see text] which means strictly less than [Formula: see text]. Meanwhile, [Formula: see text], Box dimension of Weyl fractional integral of continuous functions satisfying [Formula: see text]-order Hölder condition must be one.


Fractals ◽  
2017 ◽  
Vol 25 (05) ◽  
pp. 1750047 ◽  
Author(s):  
YANG LI ◽  
WEI XIAO

In the present paper, a one-dimensional continuous function of unbounded variation on the interval [Formula: see text] has been constructed. Box dimension of this function has been proved to be 1. Furthermore, Box dimension of its Riemann–Liouville fractional integral of any order has also been proved to be 1.


Sign in / Sign up

Export Citation Format

Share Document