Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations

2020 ◽  
Vol 509 ◽  
pp. 457-469 ◽  
Author(s):  
Huangke Chen ◽  
Ran Cheng ◽  
Jinming Wen ◽  
Haifeng Li ◽  
Jian Weng
2012 ◽  
Vol 215-216 ◽  
pp. 133-137
Author(s):  
Guo Shao Su ◽  
Yan Zhang ◽  
Zhen Xing Wu ◽  
Liu Bin Yan

Covariance matrix adaptation evolution strategy algorithm (CMA-ES) is a newly evolution algorithm. It has become a powerful tool for solving highly nonlinear multi-peak optimization problems. In many real-world optimization problems, the location of multiple optima is often required in a search space. In order to evaluate the solution, thousands of fitness function evaluations are involved that is a time consuming or expensive processes. Therefore, conventional stochastic optimization methods meet a special challenge for a very large number of problem function evaluations. Aiming to overcome the shortcoming of stochastic optimization methods in the high calculation cost, a truss optimal method based on CMA-ES algorithm is proposed and applied to solve the section and shape optimization problems of trusses. The study results show that the method is feasible and has the advantages of high accuracy, high efficiency and easy implementation.


Algorithms ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 56
Author(s):  
Wei Li

The standard covariance matrix adaptation evolution strategy (CMA-ES) is highly effective at locating a single global optimum. However, it shows unsatisfactory performance for solving multimodal optimization problems (MMOPs). In this paper, an improved algorithm based on the MA-ES, which is called the matrix adaptation evolution strategy with multi-objective optimization algorithm, is proposed to solve multimodal optimization problems (MA-ESN-MO). Taking advantage of the multi-objective optimization in maintaining population diversity, MA-ESN-MO transforms an MMOP into a bi-objective optimization problem. The archive is employed to save better solutions for improving the convergence of the algorithm. Moreover, the peaks found by the algorithm can be maintained until the end of the run. Multiple subpopulations are used to explore and exploit in parallel to find multiple optimal solutions for the given problem. Experimental results on CEC2013 test problems show that the covariance matrix adaptation with Niching and the multi-objective optimization algorithm (CMA-NMO), CMA Niching with the Mahalanobis Metric and the multi-objective optimization algorithm (CMA-NMM-MO), and matrix adaptation evolution strategy Niching with the multi-objective optimization algorithm (MA-ESN-MO) have overall better performance compared with the covariance matrix adaptation evolution strategy (CMA-ES), matrix adaptation evolution strategy (MA-ES), CMA Niching (CMA-N), CMA-ES Niching with Mahalanobis Metric (CMA-NMM), and MA-ES-Niching (MA-ESN).


Sign in / Sign up

Export Citation Format

Share Document