A constructive proof for FLP

2004 ◽  
Vol 92 (2) ◽  
pp. 83-87 ◽  
Author(s):  
Hagen Völzer
Keyword(s):  
Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Igoris Belovas

In this research, we continue studying limit theorems for combinatorial numbers satisfying a class of triangular arrays. Using the general results of Hwang and Bender, we obtain a constructive proof of the central limit theorem, specifying the rate of convergence to the limiting (normal) distribution, as well as a new proof of the local limit theorem for the numbers of the tribonacci triangle.


1976 ◽  
Vol 41 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Charles E. Hughes

AbstractA constructive proof is given which shows that every nonrecursive r.e. many-one degree is represented by the family of decision problems for partial implicational propositional calculi whose well-formed formulas contain at most two distinct variable symbols.


2009 ◽  
Vol 30 (3) ◽  
pp. 653-675 ◽  
Author(s):  
Jürgen Braun ◽  
Michael Griebel

Author(s):  
Yangyang Dong ◽  
Hong Hu ◽  
Zijian Zhang

Hysteresis poses a significant challenge for control of smart material actuators. If unaccommodated, the hysteresis can result in oscillation, poor tracking performance, and potential instability when the actuators are incorporated in control design. To overcome these problems, a fundamental idea in coping with hysteresis is inverse compensation based on the Preisach model. In this paper, we address systematically the problem of Preisach model inversion and its properties, employing the technique of three-step composition mapping and geometric interpretation of the Preisach model. A Preisach right inverse is achieved via the iterative algorithm proposed, which possesses same properties with the Preisach model. Finally, comparative experiments are performed on a piezoelectric stack actuator (PEA) to test the efficacy of the compensation scheme based on the Preisach right inverse.


Author(s):  
HERVÉ PERDRY ◽  
PETER SCHUSTER

We give a constructive proof showing that every finitely generated polynomial ideal has a Gröbner basis, provided the ring of coefficients is Noetherian in the sense of Richman and Seidenberg. That is, we give a constructive termination proof for a variant of the well-known algorithm for computing the Gröbner basis. In combination with a purely order-theoretic result we have proved in a separate paper, this yields a unified constructive proof of the Hilbert basis theorem for all Noether classes: if a ring belongs to a Noether class, then so does the polynomial ring. Our proof can be seen as a constructive reworking of one of the classical proofs, in the spirit of the partial realisation of Hilbert's programme in algebra put forward by Coquand and Lombardi. The rings under consideration need not be commutative, but are assumed to be coherent and strongly discrete: that is, they admit a membership test for every finitely generated ideal. As a complement to the proof, we provide a prime decomposition for commutative rings possessing the finite-depth property.


2005 ◽  
Vol 111 (2) ◽  
pp. 257-265 ◽  
Author(s):  
Timothy Prescott ◽  
Francis Edward Su
Keyword(s):  

2014 ◽  
Vol 6 (2) ◽  
pp. 210-229
Author(s):  
Antal Iványi

Abstract The score set of a tournament is defined as the set of its different outdegrees. In 1978 Reid [15] published the conjecture that for any set of nonnegative integers D there exists a tournament T whose degree set is D. Reid proved the conjecture for tournaments containing n = 1, 2, and 3 vertices. In 1986 Hager [4] published a constructive proof of the conjecture for n = 4 and 5 vertices. In 1989 Yao [18] presented an arithmetical proof of the conjecture, but general polynomial construction algorithm is not known. In [6] we described polynomial time algorithms which reconstruct the score sets containing only elements less than 7. In [5] we improved this bound to 9. In this paper we present and analyze new algorithms Hole-Map, Hole-Pairs, Hole-Max, Hole-Shift, Fill-All, Prefix-Deletion, and using them improve the above bound to 12, giving a constructive partial proof of Reid’s conjecture.


Sign in / Sign up

Export Citation Format

Share Document