Drift-based seismic design procedure for Buckling Restrained Braced Frames

Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 62-74
Author(s):  
Seyed Amin Mousavi ◽  
Seyed Mehdi Zahrai ◽  
Ali Akhlagh Pasand
2017 ◽  
Vol 11 (1) ◽  
pp. 513-530 ◽  
Author(s):  
Ádám Zsarnóczay ◽  
Tamás Balogh ◽  
László Gergely Vigh

The application of buckling restrained braced frames is hindered in Europe by the absence of a standardized design procedure in Eurocode 8, the European seismic design standard. The presented research aims to develop a robust design procedure for buckling restrained braced frames. A design procedure is proposed by the authors. Its performance has been evaluated for buckling restrained braced frames with two-bay X-brace type brace configurations using a state-of-the-art methodology based on the recommendations in the FEMA P695 document. A special numerical material model was developed within the scope of this research to represent the behavior of buckling restrained braces more appropriately in a numerical environment. A total of 24 archetype designs were prepared and their nonlinear dynamic response was calculated using real ground motion records in incremental dynamic analyses. Evaluation of archetype collapse probabilities confirms that the proposed design procedure can utilize the advantageous behavior of buckling restrained braces. Resulting reliability indices suggest a need for additional regulations in the Eurocodes that introduce reasonable structural reliability index limits for seismic design.


2006 ◽  
Vol 33 (10) ◽  
pp. 1251-1260 ◽  
Author(s):  
Hyunhoon Choi ◽  
Jinkoo Kim ◽  
Lan Chung

The conventional energy-based seismic design procedure based on the energy-balance concept was revised for performance-based design of buckling-restrained braced frames. The errors associated with the energy-balance concept were identified and were corrected by implementing proper correction factors. The design process began with the computation of the input energy from a response spectrum. Then the plastic energy computed based on the modified energy-balance concept was distributed to each story and the cross-sectional area of each brace was computed in such a way that all the plastic energy was dissipated by the brace. The proposed procedure was applied to the design of three-, six-, and eight-story steel frames with buckling-restrained braces for three different performance targets. According to the time-history analysis results, the mean values of the top story displacements of the model structures, designed in accordance with the proposed procedure, corresponded well with the given target displacements. Key words: energy-balance concept, buckling-restrained braces, hysteretic energy, performance-based seismic design.


2016 ◽  
Vol 847 ◽  
pp. 281-289
Author(s):  
Erkan Senol ◽  
Ismail Kose ◽  
Bilge Doran ◽  
Pelin Elif Mezrea ◽  
Bulent Akbas

Adding braces to moment frames is considered to be quite an efficient technique for increasing the global stiffness and strength of the structure. It has not only been used in steel moment frames, but also in reinforced concrete (RC) moment frames in recent years. It certainly can increase the energy absorption capacity of structures and also decrease the demand imposed by seismic ground motions. Steel braces are anchored firmly to boundary beams and columns. They are modeled as truss elements and increase earthquake resistance of the building. Buckling restrained braced frames (BRBFs) in which members yield under both tension and compression without significant buckling have been used in recent years in order to ensure the desired seismic performance of special concentrically braced frames. BRBFs are similar to the special concentrically braced frames in that seismic accelerations are resisted by a building-frame members and diagonal braces whereas the design procedure is different. BRBs should be designed to permit ductile yielding both in compression and tension. In this paper, flat-slab RC building with two different configurations of buckling restraint braces (BRBs) is studied. The buildings have 4-storey with 5 bays in both X-and Y-directions and have been designed according to Turkish Specification of Reinforced Concrete Design (TS 500). In order to explore overall behavior up to failure and lateral load resisting capacities for these buildings, nonlinear static analyses have then been performed using SAP 2000-V14.1. Pushover analysis under constant gravity loads and monotonically increasing lateral forces during an earthquake until a target displacement is reached is generally carried out as an effective tool for performance based design. The major outcome of a pushover analysis is the capacity curve which shows the base shear vs. the roof displacement relationship and represents the overall performance of the building. The results of the analyses are presented in terms of capacity curve and energy dissipation.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1807
Author(s):  
Alessia Campiche ◽  
Silvia Costanzo

Eurocodes are currently under revision within a six-year program by CEN/TC 250. In this framework, concentric bracings, particularly in cross configuration, have been largely debated; indeed, several criticisms affect the seismic design procedure currently codified within Eurocode 8, entailing significant design efforts and leading to massive and non-economical structural systems, even characterized by poor seismic behavior. The efforts of SC8 have been aimed at improving the codified seismic design criteria for concentrically braced frames, by providing requirements and detailing rules conceived to simplify the design process and to improve the seismic performance. The current paper provides recent advances in the field of computational and structural engineering focusing on symmetric X concentrically bracings in seismic area, outlining the evolution of Eurocode 8 (EC8) seismic design rules, by examining the following aspects: (i) ductility class and behavior factor, (ii) analysis and modelling aspects, (iii) design of dissipative members; (iv) design of non-dissipative zones; (v) brace-to-frame connections.


2018 ◽  
Vol 47 (14) ◽  
pp. 2840-2863 ◽  
Author(s):  
Melina Bosco ◽  
Edoardo M. Marino ◽  
Pier Paolo Rossi

2013 ◽  
Vol 43 (4) ◽  
pp. 565-587 ◽  
Author(s):  
Pao-Chun Lin ◽  
Keh-Chyuan Tsai ◽  
An-Chien Wu ◽  
Ming-Chieh Chuang

Sign in / Sign up

Export Citation Format

Share Document