Kinetics and thermodynamics of microalgae residue oxidative pyrolysis based on double distributed activation energy model with simulated annealing method

2021 ◽  
Vol 154 ◽  
pp. 104997
Author(s):  
Xiaojuan Guo ◽  
Junmeng Cai ◽  
Xi Yu
Soft Matter ◽  
2021 ◽  
Author(s):  
Zhiyao Liu ◽  
Zheng Wang ◽  
Yuhua Yin ◽  
Run Jiang ◽  
Baohui Li

Phase behavior of ABC star terpolymers confined between two identical parallel surfaces is systematically studied with a simulated annealing method. Several phase diagrams are constructed for systems with different bulk...


ACS Omega ◽  
2021 ◽  
Vol 6 (17) ◽  
pp. 11436-11446
Author(s):  
Yui Numazawa ◽  
Yuki Hara ◽  
Yoshiya Matsukawa ◽  
Yohsuke Matsushita ◽  
Hideyuki Aoki ◽  
...  

1993 ◽  
Vol 115 (3) ◽  
pp. 312-321 ◽  
Author(s):  
Tien-Sheng Chang ◽  
E. B. Magrab

A methodology to attain the highest fundamental natural frequency of a printed wiring board by rearranging its components has been developed. A general two-dimensional rearrangement algorithm is developed by which the rearrangement of the component-lead-board (CLB) assemblies is performed automatically for any combination of equal size, unequal size, movable and immovable CLBs. This algorithm is also capable of incorporating two design restrictions: fixed (immovable) components and prohibited (non-swappable) areas. A highly computationally efficient objective function for the evaluation of the automatic rearrangement process is introduced, which is a linear function of the size of the individual CLBs that have been selected for each interchange. The simulated annealing method is adapted to solve the combinatorial rearrangement of the CLBs. Using 61 combinations of boundary conditions, equal and unequal sized CLBs, movable and immovable CLBs, various CLB groupings and sets of material properties, it is found that, when compared to the exact solution obtained by an exhaustive search method, the simulated annealing method obtained the highest fundamental natural frequency within 1 percent for 87 percent of the cases considered, within 0.5 percent for 72 percent of the cases and the true maximum in 43 percent of them. To further increase the fundamental natural frequency the introduction of a single interior point support is analyzed. Depending on the boundary conditions an additional increase in the maximum fundamental natural frequency of 44 to 198 percent can be obtained.


2015 ◽  
Vol 121 (3) ◽  
pp. 1403-1410 ◽  
Author(s):  
Benedetta de Caprariis ◽  
Maria Laura Santarelli ◽  
Marco Scarsella ◽  
Carlos Herce ◽  
Nicola Verdone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document