kinetic parameters
Recently Published Documents


TOTAL DOCUMENTS

4985
(FIVE YEARS 734)

H-INDEX

96
(FIVE YEARS 11)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 147
Author(s):  
Sixtos Antonio Arreola-Villa ◽  
Héctor Javier Vergara-Hernández ◽  
Gildardo Solorio-Diáz ◽  
Alejandro Pérez-Alvarado ◽  
Octavio Vázquez-Gómez ◽  
...  

High-temperature surface oxidation kinetics were determined for low-carbon steel using a Joule heating device on hollow cylindrical specimens. The growth of the oxide layer was measured in situ between 800 and 1050 ∘C under isothermal oxidation conditions and in an air laboratory atmosphere (O2 = 20.3% and humidity = 42%). Through a laser and infrared measuring system, the expansion and temperature were measured continuously. From the data acquired, the oxidation kinetic parameters were obtained at different temperatures with a parabolic-type growth model to estimate the rate of oxide layer generation. The convergence degree of the data fitted with the oxidation model was acceptable and appropriately correlated with the experimental data. Finally, comparisons were made between the estimated kinetic parameters and those reported in the literature, observing that the activation energy values obtained are in the range of the reported values.


Author(s):  
Andreas Habersack ◽  
Stefan Franz Fischerauer ◽  
Tanja Kraus ◽  
Hans-Peter Holzer ◽  
Martin Svehlik

The differentiation between mild forms of toe-walking (equinus) in cerebral palsy (CP) and idiopathic toe-walking (ITW) is often clinically challenging. This study aims to define kinematic and kinetic parameters using 3D gait analysis to facilitate and secure the diagnosis of “idiopathic toe-walking”. We conducted a retrospective controlled stratified cohort study. 12 toe-walking subjects per group diagnosed as ITW or CP were included and stratified according to age, gender and maximal dorsiflexion in stance. We collected kinematic and kinetic data using a three-dimensional optical motion analysis system with integrated floor force plates. Pairwise comparison between ITW and CP gait data was performed, and discriminant factor analysis was conducted. Both groups were compared with typically developing peers (TD). We found kinematic and kinetic parameters having a high discriminatory power and sensitivity to distinguish between ITW and CP groups (e.g., knee angle at initial contact (91% sensitivity, 73% specificity) and foot progression angle at midstance (82% sensitivity, 73% specificity)). The strength of this study is a high discriminatory power between ITW and CP toe-walking groups. Described kinematic parameters are easy to examine even without high-tech equipment; therefore, it is directly transferable to everyday praxis.


Fermentation ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
Khairina Jaman ◽  
Nurjannah Amir ◽  
Mohammed Ali Musa ◽  
Afifi Zainal ◽  
Liyana Yahya ◽  
...  

Valorization of agro-food waste through anaerobic digestion (AD) is gaining prominence as alternative method of waste minimization and renewable energy production. The aim of this study was to identify the key parameters for digester performance subjected to kinetic study and semicontinuous operation. Biochemical methane potential (BMP) tests were conducted in two different operating conditions: without mixing (WM) and continuous mixing (CM). Three different substrates, including food waste (FW), chicken dung (CD), and codigestion of FW and CD (FWCD) were used. Further kinetic evaluation was performed to identify mixing’s effect on kinetic parameters and correlation of the kinetic parameters with digester performance (volatile solid removal (VS%) and specific methane production (SMP)). The four models applied were: modified Gompertz, logistic, first-order, and Monod. It was found that the CM mode revealed higher values of Rm and k as compared to the WM mode, and the trend was consistently observed in the modified Gompertz model. Nonetheless, the logistic model demonstrated good correlation of kinetic parameters with VS% and SMP. In the continuous systems, the optimum OLR was recorded at 4, 5, and 7 g VS/L/d for FW, CD, and FWCD respectively. Therefore, it was deduced that codigestion significantly improved digester performance. Electrical energy generation at the laboratory scale was 0.002, 0.003, and 0.006 kWh for the FW, CD, and FWCD substrates, respectively. Thus, projected electrical energy generation at the on-farm scale was 372 kWh, 382 kWh, and 518 kWh per day, respectively. Hence, the output could be used as a precursor for large-scale digester-system optimization.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 146
Author(s):  
Agata Małysiak ◽  
Tomasz Walica ◽  
Tomasz Fronczyk ◽  
Marcin Lemanowicz

In this paper, the influence of hydrodynamic conditions in Kenics static mixer, which acts as a multifunctional reactor, on precipitation kinetics of barium sulfate is investigated. The investigated range of the Reynolds number varied between 500 and 5000, which covered both laminar and turbulent flow regimes. In all experiments, the relative supersaturation was maintained at the constant level (s = 205). The obtained precipitate was collected and used for crystal size distribution (CSD) determination. On that basis, the kinetic parameters of the process were calculated using the mixed suspension mixed product removal (MSMPR) mathematical model of the process. It was found that for the whole investigated range of Reynolds number, the mixing conditions were satisfactory. CSD analysis showed that in the laminar regime, a clear tendency in crystal behavior could not be noticed. However, during the analysis of the turbulent regime, the presence of a critical Reynolds number was noticed. Above this value, there is a change in the flow pattern, which results in a change of kinetic parameters (B, G), as well as manifests in a form of a decrease in the value of mean diameters of crystals. The flow pattern change is caused by the geometry of the reactor’s inserts.


2022 ◽  
Vol 906 ◽  
pp. 1-6
Author(s):  
Emma Sahakyan ◽  
Avetik Arzumanyan ◽  
Nelli Muradyan

The prospects of implementing the mechanochemical activation method of volcanic silicate and aluminosilicate rocks - perlites, tuffs, pumice, etc. are being considered for the production of a wide range of building materials using energy-conserving technologies. The thermodynamic and kinetic parameters of interaction in the systems of aluminosilicate – NaOH have been presented, indicating low-temperature sintering of volcanic rocks with sodium hydroxide. According to the degree of activity, the rocks have the following order: perlites, tuffs, obsidian, microcline. Kinetic parameters are presented: concentration, temperature, conversion degree, reaction rate constant, time of complete reaction and product layer thickness.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 81
Author(s):  
Kui Li ◽  
Wei Zhang ◽  
Menglong Fu ◽  
Chengzhi Li ◽  
Zhengliang Xue

Generally, the linear correlation coefficient is one of the most significant criteria to appraise the kinetic parameters computed from different reaction models. Actually, the optimal kinetic triplet should meet the following two requirements: first, it can be used to reproduce the original kinetic process; second, it can be applied to predict the other kinetic process. The aim of this paper is to attempt to prove that the common criteria are insufficient for meeting the above two purposes simultaneously. In this paper, the explicit Euler method and Taylor expansion are presented to numerically predict the kinetic process of linear heating reactions. The mean square error is introduced to assess the prediction results. The kinetic processes of hematite reduced to iron at different heating rates (8, 10 and 18 K/min) are utilized for validation and evaluation. The predicted results of the reduction of Fe2O3 → Fe3O4 indicated that the inferior linear correlation coefficient did provide better kinetic predicted curves. In conclusion, to satisfy the above two requirements of reproduction and prediction, the correlation coefficient is an insufficient criterion. In order to overcome this drawback, two kinds of numerical prediction methods are introduced, and the mean square error of the prediction is suggested as a superior criterion for evaluation.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Pavel Čičmanec ◽  
Jiří Kotera ◽  
Jan Vaculík ◽  
Roman Bulánek

The catalytic activity of zeolites is often related to their acid–base properties. In this work, the relationship between the value of apparent activation energy of ethanol dehydration, measured in a fixed bed reactor and by means of a temperature-programmed surface reaction (TPSR) depending on the amount of ethanol in the zeolite lattice and the value of activation energy of H/D exchange as a measure of acid–base properties of MFI and CHA zeolites, was studied. Tests in a fixed bed reactor were unable to provide reliable reaction kinetics data due to internal diffusion limitations and rapid catalyst deactivation. Only the TPSR method was able to provide activation energy values comparable to the activation energy values obtained from the H/D exchange rate measurements. In addition, for CHA zeolite, it has been shown that the values of ethanol dehydration activation energies depend on the amount of ethanol in the CHA framework, and this effect can be attributed to the substrate clustering effects supporting the deprotonation of zeolite Brønsted centers.


Sign in / Sign up

Export Citation Format

Share Document