Distribution and deposition of low stokes number particles in turbulent channel flow

2004 ◽  
Vol 35 ◽  
pp. 411-424
Author(s):  
P.L. Garcı́a-Ybarra ◽  
A. Pinelli
Author(s):  
Marion W. Vance ◽  
Kazuyasu Sugiyama ◽  
Shu Takagi ◽  
Kyle D. Squires

Microbubble transport in fully developed turbulent channel flow is investigated using an Eulerian-Lagrangian approach. The carrier-phase flow is computed using Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) of the incompressible Navier-Stokes equations. Lagrangian particle tracking is employed for a dispersed phase comprised of small, rigid spheres of negligible density compared to the carrier-phase flow and obeying an equation of motion in which the forces used to predict the motion of the bubble are drag, pressure gradient, and added mass. In general, DNS and LES yield similar predictions of the carrier phase flow and dispersed-phase properties. The bubble Stokes number is varied over a range for which the dispersed phase essentially follows the carrier flow to larger values for which strong segregation of the microbubbles into coherent vortical structures occurs. In general, simulation results show that microbubble response is not a monotonic function of the Stokes number. The most significant structure in the concentration field occurs for Stokes numbers close to the turbulence timescales in the buffer layer. More than 2/3 of the microbubble population in the buffer layer resides in coherent structures that occupy approximately 1/3 of the computational volume.


2019 ◽  
Vol 876 ◽  
pp. 19-54 ◽  
Author(s):  
Lihao Zhao ◽  
Niranjan R. Challabotla ◽  
Helge I. Andersson ◽  
Evan A. Variano

The rotational behaviour of non-spherical particles in turbulent channel flow is studied by Lagrangian tracking of spheroidal point particles in a directly simulated flow. The focus is on the complex rotation modes of the spheroidal particles, in which the back reaction on the flow field is ignored. This study is a sequel to the letter by Zhao et al. (Phys. Rev. Lett., vol. 115, 2015, 244501), in which only selected results in the near-wall buffer region and the almost-isotropic channel centre were presented. Now, particle dynamics all across the channel is explored to provide a complete picture of the orientational and rotational behaviour with consideration of the effects of particle aspect ratio ranging from 0.1 to 10 and particle Stokes number from 0 (inertialess) to 30. The rotational dynamics in the innermost part of the logarithmic wall layer is particularly complex and affected not only by modest mean shear, but also by particle inertia and turbulent vorticity. While inertial disks exhibit modest preferential orientation in either the wall-normal or cross-stream direction, inertial rods show neither preferential tumbling nor spinning. Examination of the co-variances between particle orientation, particle rotation and fluid rotation vectors explains the qualitatively different ‘wall mode’ rotation and ‘centre mode’ rotation. Inertialess spheroids transition between the two modes within a narrow zone ($15<z^{+}<35$) in the buffer region. If the spheroids have inertia, the transition zone between the two modes shifts to the inner part of the logarithmic layer, i.e. $z^{+}\geqslant 40$. We ascribe the transition of inertialess spheroids from the ‘wall mode’ to the ‘centre mode’ rotation to the changeover between the time scales associated with mean shear and small-scale turbulence. Inertial spheroids, however, transition between the two rotational modes when the Kolmogorov time scale becomes comparable to the time scale for particle rotation, i.e. the effective Stokes number is of order unity. The aforementioned findings reveal, in addition to the effects of particle shape and alignment, the importance of the characteristic local time scale of fluid flow for the rotation of both tracer and inertial spheroids in turbulent channel flows.


Sign in / Sign up

Export Citation Format

Share Document