particle rotation
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 41)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
А.И. Грачев

In the paper the concept of conductive particle rotation in DC electric field with including the Lorentz force providing generation of electric dipole moment of the particle is for the first time discussed. Some models of the torque transfer to spherical and cylindrical particles based on of the Hall effect at usual geometry and with additional electric field application and also in the case of implementation of the photoelectromagnetic effect are presented.


2021 ◽  
Author(s):  
Usman Ali ◽  
◽  
Mamoru Kikumoto ◽  
Matteo Ciantia ◽  
Ying Cui ◽  
...  

Biaxial shearing tests on dual-sized, 2d particle assemblies are conducted at several confining pressures. The effect of particle angularity, an important mesoscale shape descriptor, is investigated at the macro and micro levels. Macroscopically, it is observed that assemblies composed of angular particles exhibit higher strengths and dilations. The difference observed in bulk behavior due to particle angularity can be explained reasonably by considering particle-level mechanisms. A novel 2D image analysis technique is employed to estimate particle kinematics. Particle rotation results to be a key mechanism strongly influenced by particle shape determining the overall granular behavior. Unlike circular particles, angular ones are more resistant to rotations due to stronger interlocking and consequently exhibit higher strengths.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rico Huhnstock ◽  
Meike Reginka ◽  
Andreea Tomita ◽  
Maximilian Merkel ◽  
Kristina Dingel ◽  
...  

AbstractMagnetic Janus particles (MJPs), fabricated by covering a non-magnetic spherical particle with a hemispherical magnetic in-plane exchange-bias layer system cap, display an onion magnetization state for comparably large diameters of a few microns. In this work, the motion characteristics of these MJPs will be investigated when they are steered by a magnetic field landscape over prototypical parallel-stripe domains, dynamically varied by superposed external magnetic field pulse sequences, in an aqueous medium. We demonstrate, that due to the engineered magnetization state in the hemispherical cap, a comparably fast, directed particle transport and particle rotation can be induced. Additionally, by modifying the frequency of the applied pulse sequence and the strengths of the individual field components, we observe a possible separation between a combined or an individual occurrence of these two types of motion. Our findings bear importance for lab-on-a-chip systems, where particle immobilization on a surface via analyte bridges shall be used for low concentration analyte detection and a particle rotation over a defined position of a substrate may dramatically increase the immobilization (and therefore analyte detection) probability.


Author(s):  
Xinqiang Liu ◽  
Hong Ji ◽  
Fei Liu ◽  
Nana Li ◽  
Jianjun Zhang ◽  
...  

To explore the spool orifice’s particle motion and erosion morphology in an electro-hydraulic servo valve under a small opening, a modeled particle motion visualization test and CFD calculation were conducted to study typical particle trajectory. The influence of pressure differential, particle shape, and particle diameter on the erosion rate along the working edges was discussed. The erosion characteristic morphology and working edges’ fillet diameter distribution were measured and analyzed. There are four typical particle motions: translation and spin on the wall faced the flow, translation and turn on the backflow wall, carried motion by the mainstream and particle rotation in a vortex. A model of the erosive particle motion of the spool orifice was built based on the visualization test and CFD. During these motions, the microscopic scraping and collision of particles with the working edges are the main causes of erosion wear. The erosion wear rate of the working edge is proportional to the pressure differential and the non-roundness of the particles. The fillet of a working edge periodically increases or decreases with the circumferential angle, which occurs due to the morphology and is consistent with the erosion wear rate distribution along the working edge.


2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Ricardo de Frias Lopez ◽  
Stefan Larsson ◽  
Johan Silfwerbrand

AbstractThere is a need of reducing the uncertainty in traffic loading-induced settlements within railway embankments. A previously developed model for unbound stone-based materials has been implemented for modelling rockfill embankments. Particles were represented by simple breakable tetrahedral clumps of spheres with four asperities each. Both corner breakage and particle splitting were allowed. Embankments with heights between 2 and 10 m were generated by successive dumping and compaction of layers of clumps on top of each other, mimicking the construction of real embankments. Cyclic loading of the embankments representing railway traffic, for both breakable and unbreakable assemblies, was carried out. Results show that the mechanical response is marked by a substantial degree of uncertainty exacerbated by particle degradation, especially for intermediate to high embankments. An analysis of particle rotation showed that particle rearrangement mostly accumulates in the top layers, resulting in a lack of influence of embankment height on settlements. Breakage, even being of (very) limited magnitude, had a statistically significant effect. Good agreement with common geostatic theories predicting horizontal pressures was also observed. Regarding resilient response, linear stiffening with embankment height is observed with a minor influence of breakage. All in all, it is shown that the specific scale, boundary and stress conditions of embankments results in a behaviour deviating from that observed under triaxial conditions. Therefore, the key contribution is showing that it is possible to realistically model high rockfill embankments under a large number of loading cycles and furthermore including degradation, something not attempted to date. Graphic abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuo Zhou ◽  
Antoinette Tordesillas ◽  
Mehdi Pouragha ◽  
James Bailey ◽  
Howard Bondell

AbstractWe propose a new metric called s-LID based on the concept of Local Intrinsic Dimensionality to identify and quantify hierarchies of kinematic patterns in heterogeneous media. s-LID measures how outlying a grain’s motion is relative to its s nearest neighbors in displacement state space. To demonstrate the merits of s-LID over the conventional measure of strain, we apply it to data on individual grain motions in a set of deforming granular materials. Several new insights into the evolution of failure are uncovered. First,s-LID reveals a hierarchy of concurrent deformation bands that prevails throughout loading history. These structures vary not only in relative dominance but also spatial and kinematic scales. Second, in the nascent stages of the pre-failure regime, s-LID uncovers a set of system-spanning, criss-crossing bands: microbands for small s and embryonic-shearbands at large s, with the former being dominant. At the opposite extreme, in the failure regime, fully formed shearbands at large s dominate over the microbands. The novel patterns uncovered from s-LID contradict the common belief of a causal sequence where a subset of microbands coalesce and/or grow to form shearbands. Instead, s-LID suggests that the deformation of the sample in the lead-up to failure is governed by a complex symbiosis among these different coexisting structures, which amplifies and promotes the progressive dominance of the embryonic-shearbands over microbands. Third, we probed this transition from the microband-dominated regime to the shearband-dominated regime by systematically suppressing grain rotations. We found particle rotation to be an essential enabler of the transition to the shearband-dominated regime. When grain rotations are completely suppressed, this transition is prevented: microbands and shearbands coexist in relative parity.


Author(s):  
Angelie Rivera-Rodriguez ◽  
Carlos M. Rinaldi-Ramos

Magnetic nanoparticles are of interest for biomedical applications because of their biocompatibility, tunable surface chemistry, and actuation using applied magnetic fields. Magnetic nanoparticles respond to time-varying magnetic fields via physical particle rotation or internal dipole reorientation, which can result in signal generation or conversion of magnetic energy to heat. This dynamic magnetization response enables their use as tracers in magnetic particle imaging (MPI), an emerging biomedical imaging modality in which signal is quantitative of tracer mass and there is no tissue background signal or signal attenuation. Conversion of magnetic energy to heat motivates use in nanoscale thermal cancer therapy, magnetic actuation of drug release, and rapid rewarming of cryopreserved organs. This review introduces basic concepts of magnetic nanoparticle response to time-varying magnetic fields and presents recent advances in the field, with an emphasis on MPI and conversion of magnetic energy to heat. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 12 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 42 (4) ◽  
pp. 541-552
Author(s):  
M. G. Reddy ◽  
S. A. Shehzad

AbstractThis article intends to illustrate the Darcy flow and melting heat transmission in micropolar liquid. The major advantage of micropolar fluid is the liquid particle rotation through an independent kinematic vector named the microrotation vector. The novel aspects of the Cattaneo-Christov (C-C) heat flux and Joule heating are incorporated in the energy transport expression. Two different nanoparticles, namely, MoS2 and MgO, are suspended into the base-fluid. The governing partial differential equations (PDEs) of the prevailing problem are slackening into ordinary differential expressions (ODEs) via similarity transformations. The resulting mathematical phenomenon is illustrated by the implication of fourth-fifth order Runge-Kutta-Fehlberg (RKF) scheme. The fluid velocity and temperature distributions are deliberated by using graphical phenomena for multiple values of physical constraints. The results are displayed for both molybdenum disulphide and magnesium oxide nanoparticles. A comparative benchmark in the limiting approach is reported for the validation of the present technique. It is revealed that the incrementing material constraint results in a higher fluid velocity for both molybdenum disulphide and magnesium oxide nanoparticle situations.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 277
Author(s):  
Tohme Tohme ◽  
Pascale Magaud ◽  
Lucien Baldas

Understanding the behavior of a single particle flowing in a microchannel is a necessary step in designing and optimizing efficient microfluidic devices for the separation, concentration, counting, detecting, sorting, or mixing of particles in suspension. Although the inertial migration of spherical particles has been deeply investigated in the last two decades, most of the targeted applications involve shaped particles whose behavior in microflows is still far from being completely understood. While traveling in a channel, a particle both rotates and translates: it translates in the streamwise direction driven by the fluid flow but also in the cross-section perpendicular to the streamwise direction due to inertial effects. In addition, particles’ rotation and translation motions are coupled. Most of the existing works investigating the transport of particles in microchannels decouple their rotational and lateral migration behaviors: particle rotation is mainly studied in simple shear flows, whereas lateral migration is neglected, and studies on lateral migration mostly focus on spherical particles whose rotational behavior is simple. The aim of this review is to provide a summary of the different works existing in the literature on the inertial migration and the rotational behavior of non-spherical particles with a focus and discussion on the remaining scientific challenges in this field.


Sign in / Sign up

Export Citation Format

Share Document