particle orientation
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 52)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Karol Havrila ◽  
Juraj Tóth ◽  
Leonard Kornoš

Aims. The complex dynamics of bodies, originating from the interplanetary matter and passing through Earth’s atmosphere, defines their further position, velocity, and final location on Earth’s surface in the form of meteorites. One of the important factors that affect the movement of a body in the atmosphere is its shape and orientation. Our goal is to model the interaction of real shape meteoroids with Earth’s atmosphere and compare the results with the standard spherical body approach. Methods. In the simulation, we use 3D models of fragments of the Košice meteorite with different sizes and shapes. Using a 3D model of fragments, we consider the real shape of the body to define its resistance properties during atmospheric transition more specifically. The simulation is performed using virtual wind tunnel in the MicroCFD (Computational Fluid Dynamics) software to obtain more realistic drag coefficients and using the µ(m)-Trajectory software to model the particle trajectory in the atmosphere including the wind profile. The final outputs from these programs are the drag coefficient as a function of the altitude and the particle orientation. Using these parameters we get the more realistic body trajectory and the impact area coordinates. Comparison of the results for real and spherical model meteorite impact location is discussed. Results. Simulation showed significant differences in trajectory and the impact area for the different real body orientations compared to the spherically symmetric body. Also, an important result is a difference in the impact area of the real body with a specific orientation without rotation and the body with considered rotation. The significant difference between the modeled impact of a real shape body and its real place of finding compared to a spherically symmetric body indicates the importance of the method used.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongcheng Fan ◽  
Bo Wang ◽  
Yan Zhang ◽  
Yun Zhu ◽  
Bo Song ◽  
...  

AbstractCryo-electron microscopy (cryo-EM) has become a powerful tool to resolve high-resolution structures of biomacromolecules in solution. However, air-water interface induced preferred orientations, dissociation or denaturation of biomacromolecules during cryo-vitrification remains a limiting factor for many specimens. To solve this bottleneck, we developed a cryo-EM support film using 2D crystals of hydrophobin HFBI. The hydrophilic side of the HFBI film adsorbs protein particles via electrostatic interactions and sequesters them from the air-water interface, allowing the formation of sufficiently thin ice for high-quality data collection. The particle orientation distribution can be regulated by adjusting the buffer pH. Using this support, we determined the cryo-EM structures of catalase (2.29 Å) and influenza haemagglutinin trimer (2.56 Å), which exhibited strong preferred orientations using a conventional cryo-vitrification protocol. We further show that the HFBI film is suitable to obtain high-resolution structures of small proteins, including aldolase (150 kDa, 3.28 Å) and haemoglobin (64 kDa, 3.6 Å). Our work suggests that HFBI films may have broad future applications in increasing the success rate and efficiency of cryo-EM.


2021 ◽  
Author(s):  
Hongcheng Fan ◽  
Bo Wang ◽  
Yan Zhang ◽  
Yun Zhu ◽  
Bo Song ◽  
...  

Cryo-electron microscopy (cryo-EM) has become the most powerful tool to resolve the high-resolution structures of biomacromolecules in solution. However, the air-water interface induced preferred orientation, dissociation or denaturation of biomacromolecules during cryo-vitrification is still a major limitation factor for many specimens. To solve this bottleneck, we developed a new type of cryo-EM support film using the 2D crystal of hydrophobin I (HFBI) protein. The HFBI-film utilizes its hydrophilic side to adsorb protein particles via electrostatic interactions and keep air-water interface away, allowing thin-enough ice and high-quality data collection. The particle orientation distribution can be optimized by changing the buffer pH. We, for the first time, solved the cryo-EM structure of catalase (2.28 Å) that exhibited strong preferred orientation using conventional cryo-vitrification protocol. We further proved the HFBI-film is suitable to solve the high-resolution structures of small proteins including aldolase (150 kDa, 3.34 Å) and hemoglobin (64 kDa, 3.6 Å). Our work implied that the HFBI-film will have a wide application in the future to increase the successful rate and efficiency of cryo-EM.


2021 ◽  
Author(s):  
Yuri Iozzo ◽  
Egor Svidritskiy ◽  
Yu Qiu ◽  
Albert Xu ◽  
Anna Park ◽  
...  

Abstract Background Developing a biologic medicine requires successful decision making during selection and optimization in addition to the pool of candidates at early research stages. Knowing structural information and binding patterns between drug target and discovery candidates greatly increases the probability of success. Methods With the cryo-EM resolution revolution and rapid development of computational software, we have evaluated and integrated various tools in structural biology and the computation field and established a highly cost-effective platform which allows us to obtain fast and accurate structural information for nearly all our biologics projects with a close to 100% success rate and as fast as weeks turn-around time. Results Here we report four case studies selected from 38 different protein structures and share how we integrate cryo-EM structure determination, computational structure modeling, and molecular dynamics simulation. With proper decision making and strategic planning, the platform allows us to obtain quality results within days to weeks, including sub-100 kDa complexes which are usually considered a challenge due to their small size. Conclusions Our utilization of this differential approach and multiple software packages allows us to manage priorities and resources to achieve goals quickly and efficiently. We demonstrate how to effectively overcome particle orientation bias by altering complex composition. In several of our examples, we use glycan density to facilitate interpretation of low-resolution 3D reconstruction and epitope mapping. Protein information plays an important role in our cryo-EM projects, especially in cases where we see significant challenges in obtaining high-resolution 3D maps.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2287
Author(s):  
Lubos Kristak ◽  
Ivan Ruziak ◽  
Eugenia Mariana Tudor ◽  
Marius Cătălin Barbu ◽  
Günther Kain ◽  
...  

The effects of using 100% larch bark (Larix decidua Mill) as a raw material for composite boards on the thermophysical properties of this innovative material were investigated in this study. Panels made of larch bark with 4–11 mm and 10–30 mm particle size, with ground bark oriented parallel and perpendicular to the panel’s plane at densities varying from 350 to 700 kg/m3 and bonded with urea-formaldehyde adhesive were analyzed for thermal conductivity, thermal resistivity and specific heat capacity. It was determined that there was a highly significant influence of bulk density on the thermal conductivity of all the panels. With an increase in the particle size, both parallel and perpendicular to the panel´s plane direction, the thermal conductivity also increased. The decrease of thermal diffusivity was a consequence of the increasing particle size, mostly in the parallel orientation of the bark particles due to the different pore structures. The specific heat capacity is not statistically significantly dependent on the density, particle size, glue amount and particle orientation.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 887
Author(s):  
Eugenia Mariana Tudor ◽  
Lubos Kristak ◽  
Marius Catalin Barbu ◽  
Tomáš Gergeľ ◽  
Miroslav Němec ◽  
...  

The potential of tree bark, a by-product of the woodworking industry, has been studied for more than seven decades. Bark, as a sustainable raw material, can replace wood or other resources in numerous applications in construction. In this study, the acoustic properties of bark-based panels were analyzed. The roles of the particle size (4–11 mm and 10–30 mm), particle orientation (parallel and perpendicular) and density (350–700 kg/m3) of samples with 30 mm and 60 mm thicknesses were studied at frequencies ranging from 50 to 6400 Hz. Bark-based boards with fine-grained particles have been shown to be better in terms of sound absorption coefficient values compared with coarse-grained particles. Bark composites mixed with popcorn bonded with UF did not return the expected results, and it is not possible to recommend this solution. The best density of bark boards to obtain the best sound absorption coefficients is about 350 kg/m3. These lightweight panels achieved better sound-absorbing properties (especially at lower frequencies) at higher thicknesses. The noise reduction coefficient of 0.5 obtained a sample with fine particles with a parallel orientation and a density of around 360 kg/m3.


2021 ◽  
Author(s):  
Sandeep Dhar

The trajectory of an angular particle as it cuts a ductile target is, in general, complicated because of its dependence not only on particle shape, but also on particle orientation at the initial instant of impact. This orientation dependence has also made experimental measurement of impact parameters of single angular particles very difficult, resulting in a relatively small amount of available experimental data in the literature. The current work is focused on obtaining measurements of particle kinematics for comparison to rigid plastic model developed by Papini and Spelt. Fundamental mechanisms of material removal are identified, and measurements of rebound parameters and corresponding crater dimensions of single hardened steel particles launched against flat aluminium alloy targets are presented. Also a 2-D finite element model is developed and a dynamic analysis is performed to predict the erosion mechanism. Overall, a good agreement was found among the experimental results, rigid-plastic model predictions and finite element model predictions.


2021 ◽  
Author(s):  
Vahid Hadavi

Embedment and fracture of abrasives are two often neglected important phenomena that can affect material removal occurring in industrial processes that involve high speed impact of particles on relatively ductile targets. This thesis proposes new methodologies to predict the likelihood of particle embedment and fracture for a typical solid particle erosion application. Double-pulsed laser shadowgraphy was used to measure the instantaneous orientation of angular 89-363 μm SiC particles within a micro-abrasive jet, in order to assess whether their orientation affected the propensity for particle embedment. A tendency for particles to orient with the jet axis was measured and successfully modelled (<9% error), with larger abrasives more likely to orient. The measured instantaneous orientation of particles was used to generate a three-dimensional coupled finite element and smoothed particle hydrodynamics model capable of simulating the particle embedment. Use of various combinations of process parameters yielded embedment predictions that agreed with measured ones with, at most, a 16% error. Increases in particle size, orientation angle, and velocity were found to enhance the propensity for embedment. Double-pulsed laser shadowgraphy was used to record the impact and fracture of abrasives upon impact. A numerical model that utilized an Element Free Galerkin (EFG) technique with a novel scheme for generating realistic three-dimensional particle geometries was used to simulate the particle fracture. For a wide variety of process parameters, the numerical predictions of particle average size, roundness and rebound velocity agreed with the corresponding measurements to within 10%, at most. The propensity for particle fracture was found to depend on the magnitude of particle kinetic energy perpendicular to the target. It was confirmed that at the same incident velocity, larger particles were more likely to fracture. However, for the same kinetic energy, smaller particles were more likely to fracture. To the best knowledge of the author, this thesis is the first to report measurements of particle orientation and particle fracture in abrasive jets, and the first to develop numerical modeling of particle fracture and embedment. The results have important implications for erosion testing and abrasive jet machining operations.


Sign in / Sign up

Export Citation Format

Share Document