stokes number
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 84)

H-INDEX

34
(FIVE YEARS 6)

Author(s):  
Pengyun Xu ◽  
Guohui Meng ◽  
Guijie Liu ◽  
Thomas W. coyle ◽  
Larry Pershin ◽  
...  

Abstract Suspension plasma spray (SPS) has been developed to be a rapid, facile and cost-effective process to deposit columnar-structured thermal barrier coatings (TBCs). Different than the most commonly used ethanol-based suspensions, water-based suspensions have not been used in the SPS process to deposit columnar-structured TBCs due to their high surface tension, although they are much cheaper and safer. In this work, a new water-based SPS process was prepared by adding surfactant to lower the surface tension. The optimum content of dispersant and surfactant added into the suspension was determined via the measurements of viscosity, particle size, surface tension, contact angles, and atomized droplet size. Coatings deposited using suspension with and without surfactant showed typical columnar-structured microstructures and vertically-cracked microstructures, respectively. The coatings deposited using suspension with surfactant also showed an evolution from columnar-structured microstructures to mixed microstructures of columns and cracks, and to homogeneous microstructures with the increase of standoff distance. The formation of different coating microstructures were correlated to the size of droplets after aerodynamic breakup and the Stokes number of in-flight particles. The new water-based suspension together with the water-based SPS process show high potential to be a cheap and effective alternative to the ethanol-based SPS process.


2021 ◽  
Vol 933 ◽  
Author(s):  
Andrew D. Bragg ◽  
Adam L. Hammond ◽  
Rohit Dhariwal ◽  
Hui Meng

Expanding recent observations by Hammond & Meng (J. Fluid Mech., vol. 921, 2021, A16), we present a range of detailed experimental data of the radial distribution function (r.d.f.) of inertial particles in isotropic turbulence for different Stokes number, $St$ , showing that the r.d.f. grows explosively with decreasing separation r, exhibiting $r^{-6}$ scaling as the collision radius is approached, regardless of $St$ or particle radius $a$ . To understand such explosive clustering, we correct a number of errors in the theory by Yavuz et al. (Phys. Rev. Lett., vol. 120, 2018, 244504) based on hydrodynamic interactions between pairs of small, weakly inertial particles. A comparison between the corrected theory and the experiment shows that the theory by Yavuz et al. underpredicts the r.d.f. by orders of magnitude. To explain this discrepancy, we explore several alternative mechanisms for this discrepancy that were not included in the theory and show that none of them are likely the explanation. This suggests new, yet-to-be-identified physical mechanisms are at play, requiring further investigation and new theories.


2021 ◽  
Vol 933 ◽  
Author(s):  
S. Ramanarayanan ◽  
W. Coenen ◽  
A.L. Sánchez

This paper investigates the air flow induced by a rigid circular disk or piston vibrating harmonically along its axis of symmetry in the immediate vicinity of a parallel surface. Previous attempts to characterize these so-called ‘squeeze-film’ systems largely relied on simplifications afforded by neglecting either fluid acceleration or viscous forces inside the thin enclosed gas layer. The present viscoacoustic analysis employs the asymptotic limit of small vibration amplitudes to investigate the flow by systematic reduction of the Navier–Stokes equations in two distinct flow regions, namely, the inner gaseous film where streamlines are nearly parallel to the confining walls and the near-edge region of non-slender flow that features gas exchange with the surrounding stagnant atmosphere. The flow in the gaseous film depends on the relevant Stokes number, defined as the ratio of the characteristic viscous time across the film to the characteristic oscillation time, and on a compressibility parameter, defined as the square of the ratio of the acoustic time for radial pressure equilibration to the oscillation time. A Strouhal number based on the local residence time emerges as an additional governing parameter for the near-edge region, which is incompressible at leading order. The method of matched asymptotic expansions is used to describe the solution in both regions, across which the time-averaged pressure exhibits comparable variations that give opposing contributions to the resulting time-averaged force experienced by the disk or piston. A diagram structured with the Stokes number and compressibility parameter as coordinates reveals that this steady squeeze-film force, typically repulsive for small values of the Stokes number, alternates to attraction across a critical separation contour in the parametric domain that exists for all Strouhal numbers. This analysis provides, for the first time, a unifying viscoacoustic theory of axisymmetric squeeze films, which yields a reduced parametric description for the time-averaged repulsion/attraction force that is potentially useful in applications including non-contact fluid bearings and robot locomotion.


2021 ◽  
Vol 933 ◽  
Author(s):  
Kee Onn Fong ◽  
Filippo Coletti

In collisional gas–solid flows, dense particle clusters are often observed that greatly affect the transport properties of the mixture. The characterisation and prediction of this phenomenon are challenging due to limited optical access, the wide range of scales involved and the interplay of different mechanisms. Here, we consider a laboratory setup in which particles fall against upward-moving air in a square vertical duct: a classic configuration in riser reactors. The use of non-cohesive, monodispersed, spherical particles and the ability to independently vary the solid volume fraction ( $\varPhi _V = 0.1\,\% - 0.8\,\%$ ) and the bulk airflow Reynolds number ( $Re_{bulk} = 300 - 1200$ ) allows us to isolate key elements of the multiphase dynamics, providing the first laboratory observation of cluster-induced turbulence. Above a threshold $\varPhi _V$ , the system exhibits intense fluctuations of concentration and velocity, as measured by high-speed imaging via a backlighting technique which returns optically depth-averaged fields. The space–time autocorrelations reveal dense and persistent mesoscale structures falling faster than the surrounding particles and trailing long wakes. These are shown to be the statistical footprints of visually observed clusters, mostly found in the vicinity of the walls. They are identified via a percolation analysis, tracked in time, and characterised in terms of size, shape, location and velocity. Larger clusters are denser, longer-lived and have greater descent velocity. At the present particle Stokes number, the threshold $\varPhi _V \sim 0.5$ % (largely independent from $Re_{bulk}$ ) is consistent with the view that clusters appear when the typical interval between successive collisions is shorter than the particle response time.


2021 ◽  
Vol 932 ◽  
Author(s):  
P.D. Huck ◽  
R. Osuna-Orozco ◽  
N. Machicoane ◽  
A. Aliseda

A canonical co-axial round-jet two-fluid atomizer where atomization occurs over a wide range of momentum ratios: $M=1.9 - 376.4$ is studied. The near field of the spray, where the droplet formation process takes place, is characterized and linked to droplet dispersion in the far field of the jet. Counterintuitively, our results indicate that in the low-momentum regime, increasing the momentum in the gas phase leads to less droplet dispersion. A critical momentum ratio of the order of $M_c=50$ , that separates this regime from a high-momentum one with less dispersion, is found in both the near and far fields. A phenomenological model is proposed that determines the susceptibility of droplets to disperse beyond the nominal extent of the gas phase based on a critical Stokes number, $St=\tau _p/T_E=1.9$ , formulated based on the local Eulerian large scale eddy turnover time, $T_E$ , and the droplets’ response time, $\tau _p$ . A two-dimensional phase space summarizes the extent of these different regimes in the context of spray characteristics found in the literature.


2021 ◽  
Vol 930 ◽  
Author(s):  
Wenwu Yang ◽  
Yi-Zhao Zhang ◽  
Bo-Fu Wang ◽  
Yuhong Dong ◽  
Quan Zhou

We investigate the dynamic couplings between particles and fluid in turbulent Rayleigh–Bénard (RB) convection laden with isothermal inertial particles. Direct numerical simulations combined with the Lagrangian point-particle mode were carried out in the range of Rayleigh number $1\times 10^6 \le {Ra}\le 1 \times 10^8$ at Prandtl number ${Pr}=0.678$ for three Stokes numbers ${St_f}=1 \times 10^{-3}$ , $8 \times 10^{-3}$ and $2.5 \times 10^{-2}$ . It is found that the global heat transfer and the strength of turbulent momentum transfer are altered a small amount for the small Stokes number and large Stokes number as the coupling between the two phases is weak, whereas they are enhanced a large amount for the medium Stokes number due to strong coupling of the two phases. We then derived the exact relation of kinetic energy dissipation in the particle-laden RB convection to study the budget balance of induced and dissipated kinetic energy. The strength of the dynamic coupling can be clearly revealed from the percentage of particle-induced kinetic energy over the total induced kinetic energy. We further derived the power law relation of the averaged particles settling rate versus the Rayleigh number, i.e. $S_p/(d_p/H)^2{\sim} Ra^{1/2}$ , which is in remarkable agreement with our simulation. We found that the settling and preferential concentration of particles are strongly correlated with the coupling mechanisms.


Author(s):  
Ang Li ◽  
Shengmin Shi ◽  
Dixia Fan

Abstract Models of cylinders in the oscillatory flow can be found virtually everywhere in the marine industry, such as pump towers experiencing sloshing load in a LNG ship liquid tank. However, compared to the problem of a cylinder in the uniform flow, a cylinder in the oscillatory flow is less studied, let alone multiple cylinders. Therefore, we experimentally and numerically studied two identical circular cylinders oscillating in the still water with either a side-by-side or a tandem configuration for a wide range of Keulegan-Carpenter number and Stokes number β. The experiment result shows that the hydrodynamic performance of an oscillating cylinder pair in the still water is greatly altered due to the interference between the multiple structures with different configurations. In specific, compared to the single-cylinder case, the drag coefficient is greatly enhanced when two cylinders are placed side-by-side at a small gap ratio, while dual cylinders in a tandem configuration obtain a smaller drag coefficient and oscillating lift coefficient. In order to reveal the detailed flow physics that results in significant fluid forces alternations, the detailed flow visualization is provided by the numerical simulation: the small gap between two cylinders in a side-by-side configuration will result in a strong gap jet that enhances the energy dissipation and increase the drag, while due to the flow blocking effect for two cylinders in a tandem configuration, the drag coefficient decreases.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110491
Author(s):  
Arun Jacob ◽  
KA Shafi ◽  
KE Reby Roy

Modern electronics demand more powerful cooling systems due to an increase in heat dissipation. The traditional cooling techniques reached their limit and the synthetic jet impingement arises as a promising method for cooling of modern electronic systems. This paper presents the experimental studies on the heat transfer characteristics of a synthetic jet. The synthetic jet is driven by a piston actuator. The effects of dimensionless parameters like the distance between the orifice and heater plate (Z/D), the ratio of stroke length to diameter of orifice ( L/D), Stokes number, and Reynolds number are discussed. The effect of orifice geometry, number of orifices are also presented. The results indicate that the Z/D and Stokes number have a significant influence on the heat transfer rate. As the Stokes number increases the heat transfer increases due to an increase in axial momentum and turbulence in the flow direction. For circular orifice and at high Z/D, the L/D ratio should be higher for better heat transfer. Rectangular orifice performs better than square and circular geometries. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressure ( Pnr) are achieved for high Stokes number and smaller areas of the orifice.


Sign in / Sign up

Export Citation Format

Share Document