Site-specific earthquake ground motion parameters at the southeastern part of Muscat, Sultanate of Oman

2018 ◽  
Vol 145 ◽  
pp. 201-214 ◽  
Author(s):  
Mohamed Ezzelarab ◽  
Issa El-Hussain ◽  
Adel M.E. Mohamed ◽  
Ahmed Deif
2004 ◽  
Vol 20 (3) ◽  
pp. 1021-1045 ◽  
Author(s):  
Robert L. Wesson ◽  
David M. Perkins ◽  
Edgar V. Leyendecker ◽  
Richard J. Roth ◽  
Mark D. Petersen

The distributions of insured losses to single-family housing following the 1994 Northridge, California, earthquake for 234 ZIP codes can be satisfactorily modeled with gamma distributions. Regressions of the parameters in the gamma distribution on estimates of ground motion, derived from ShakeMap estimates or from interpolated observations, provide a basis for developing curves of conditional probability of loss given a ground motion. Comparison of the resulting estimates of aggregate loss with the actual aggregate loss gives satisfactory agreement for several different ground-motion parameters. Estimates of loss based on a deterministic spatial model of the earthquake ground motion, using standard attenuation relationships and NEHRP soil factors, give satisfactory results for some ground-motion parameters if the input ground motions are increased about one and one-half standard deviations above the median, reflecting the fact that the ground motions for the Northridge earthquake tended to be higher than the median ground motion for other earthquakes with similar magnitude. The results give promise for making estimates of insured losses to a similar building stock under future earthquake loading.


2020 ◽  
Vol 18 (14) ◽  
pp. 6245-6281
Author(s):  
D. Gaudio ◽  
R. Rauseo ◽  
L. Masini ◽  
S. Rampello

Abstract Seismic performance of slopes can be assessed through displacement-based procedures where earthquake-induced displacements are usually computed following Newmark-type calculations. These can be adopted to perform a parametric integration of earthquake records to evaluate permanent displacements for different slope characteristics and seismic input properties. Several semi-empirical relationships can be obtained for different purposes: obtaining site-specific displacement hazard curves following a fully-probabilistic approach, to assess the seismic risk associated with the slope; providing semi-empirical models within a deterministic framework, where the seismic-induced permanent displacement is compared with threshold values related to different levels of seismic performance; calibrating the seismic coefficient to be used in pseudo-static calculations, where a safety factor against limit conditions is computed. In this paper, semi-empirical relationships are obtained as a result of a parametric integration of an updated version of the Italian strong-motion database, that, in turn, is described and compared to older versions of the database and to well-known ground motion prediction equations. Permanent displacement is expressed as a function of either ground motion parameters, for a given yield seismic coefficient of the slope, or of both ground motion parameters and the seismic coefficient. The first are meant to be used as a tool to develop site-specific displacement hazard curves, while the last can be used to evaluate earthquake-induced slope displacements, as well as to calibrate the seismic coefficient to be used in a pseudo-static analysis. Influence of the vertical component of seismic motion on these semi-empirical relationships is also assessed.


Sign in / Sign up

Export Citation Format

Share Document