seismic coefficient
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 18)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pai Lifang ◽  
Wu Honggang ◽  
Yang Tao ◽  
Zhong Feifei

In this paper, a pseudostatic seismic coefficient evaluation method for slope dynamic stability analysis was explored with Yushu Airport Road 3# landslide as a typical engineering case, and the shaking table test and numerical calculation were performed during the exploration. The loading waveform was selected as Yushu wave, and the acceleration time-history of seismic waves was measured and analyzed, revealing the failure mode of slopes. Based on the rigid-body limit equilibrium theory, the instantaneous additional seismic forces of each block and the time-history landslide stability coefficient were calculated. According to the time-history of the landslide, dynamic stability coefficients were calculated. Subsequently, we proposed a pseudostatic seismic coefficient evaluation method and discussed the seismic coefficient slope dynamic stability analysis. The results showed that as the vibration frequency rose, the average acceleration and the residual displacement of the slope decreased, but the slope grew more dynamically stable. With the proposed method, we calculated the period of slope seismic action to be 0.126 s and the average maximum acceleration to be 0.156 g, which was close to the designed ground motion acceleration of 0.15 g. Besides, we calculated the safety factor of landslides under earthquake to be 0.93∼0.97, which was close to that obtained from the building code method and in accordance with the present seismic deformation and failure mode of landslides. Moreover, the results obtained from the method of nuclear power plant specification were relatively small compared to other specification methods. The research is significant because it provides a new idea for the evaluation of seismic landslide stability in practical engineering.


2021 ◽  
Author(s):  
Aurelian C. Trandafir

Abstract Pseudostatic limit-equilibrium based slope stability analyses are carried out on a routine basis to evaluate stability of submarine slopes under earthquake loading. For slopes in deepwater settings, a major challenge in performing pseudostatic slope stability analyses is selection of an appropriate seismic coefficient. Most published displacement-based methodologies for seismic coefficient selection were developed using simplified sliding block models for seismic slope performance evaluation that are unable to capture the complex deformation mechanism of deepwater slopes during earthquakes. To address this challenge, this study employs two-dimensional dynamic finite-element based deformation analysis to investigate the earthquake response of submarine clay slopes characterized by morphology, stratigraphic architecture and geotechnical properties representative for the deepwater environment. Finite-element computed seismic slope performance indicators, including horizontal peak ground acceleration at the seafloor and earthquake-induced maximum shear strain within the slope, along with horizontal seismic coefficients required to trigger slope instability in limit-equilibrium based pseudostatic stability analyses are used to develop a rational shear strain-based correlation relationship for deepwater slope seismic coefficient selection.


2021 ◽  
Vol 13 (15) ◽  
pp. 8647
Author(s):  
Dongli Li ◽  
Miaojun Sun ◽  
Echuan Yan ◽  
Tao Yang

The method of pseudo-static analysis has been widely used to perform seismic slope stability, in which a seismic coefficient is used to represent the earthquake shaking effect. However, it is important but difficult to select the magnitude of seismic coefficients, which are inevitably subjected to different levels of uncertainties. This paper aimed to study the influences of seismic coefficient uncertainties on pseudo-static slope stability from the perspective of probabilistic sensitivity analysis. The deterministic critical slope height was estimated by the method of upper-bound limit analysis with the method of pseudo-static analysis. The soil shear strength parameters, the slope geometrical parameters (including slope inclinations, slope heights, and the slope widths), the horizontal seismic acceleration coefficient, and the unit weight of soil masses were considered as random variables. The influences of their uncertainty degrees, the correlation relations, and the distribution types of random variables on probabilistic density functions, failure probabilities, and sensitivity analysis were discussed. It was shown that the uncertainty degrees greatly impact the probability density distributions of critical slope heights, the computed failure probabilities, and Sobol’ index, and the horizontal seismic coefficient was the second most important variable compared to the soil shear strength parameters.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-12
Author(s):  
Tommy Andreant ◽  
Lusmeilia Afriani ◽  
Ofik Taufik Purwadi ◽  
Andius D. Saputra

Analysis using depression line method was conducted in two conditions, at normal water level (± 124 m) with a result of 1.11 × 10-3 m3/s and at flood water level ± 126.5 m with result 1.33 × 10-3 m3/s. Capacity shows (< 1%) the average enters the reservoir, making it safe from the danger of distress. Safety calculations for pipping showed a bigger value than the filtration flow speed indication at the average value of 4,638 ( > 4) which means that dam will not make pipping symptoms. Analysis conducted on the slope of the dam using slice method without entering the value of seismic coefficient obtained a safe number result in all loading conditions and the analysis by adding a seismic coefficient get a safe result except in two conditions, at elevation ± 126.5 m is  SF 1.05 and at elevation ± 124 m SF is 1.05.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Subhadeep Metya ◽  
Neeraj Chaudhary ◽  
Keshav Kumar Sharma

AbstractA deterministic model for the factor of safety of an idealized rock mass for planar mode of failure is developed adopting Limit Equilibrium Method (LEM) using Patton’s shear strength criterion and considering practically occurring conditions such as the effect of tension crack, water filled up in tension crack, horizontal and vertical seismic acceleration, rock bolt stabilizing force and surcharge. In the Pseudo-static analysis horizontal seismic acceleration is taken outward from the slope and vertical seismic acceleration is considered in both the direction i.e. towards the direction of gravity (downward) and opposite to the direction of gravity (upward). An expression of normal stresses as limiting criterion has been derived in order to compare the field normal stresses along the failure surface. A detailed parametric study has been presented to investigate the influence of vertical seismic coefficient for both the direction on the stability of rock slope using developed expression. For high normal stress along the failure plane, it is observed that the factor of safety decreases with increase in the value of vertical seismic coefficient towards the direction of gravity and increases linearly with increase in the value of vertical seismic coefficient against the direction of gravity and the opposite trend has been found for lower normal stress. The vertical seismic coefficient against the direction of gravity has predominant effect on factor of safety of rock slope as the rate of increase/decrease of factor of safety with vertical seismic coefficient is more against the direction of gravity. Hence in determining the critical factor of safety, effect of vertical seismic coefficient against the direction of gravity should be considered.


2020 ◽  
Vol 61 (5) ◽  
pp. 262-271
Author(s):  
Hiroyuki OHNO ◽  
Takahiro OOYAMA ◽  
Yusaku ISOBE ◽  
Kouji UTSUGI ◽  
Takuro OHKUBO ◽  
...  

2020 ◽  
Author(s):  
Moon-Gyo Lee ◽  
Jeong-Gon Ha ◽  
Hyung-Ik Cho ◽  
Chang-Guk Sun ◽  
Dong-Soo Kim

2020 ◽  
Vol 18 (14) ◽  
pp. 6245-6281
Author(s):  
D. Gaudio ◽  
R. Rauseo ◽  
L. Masini ◽  
S. Rampello

Abstract Seismic performance of slopes can be assessed through displacement-based procedures where earthquake-induced displacements are usually computed following Newmark-type calculations. These can be adopted to perform a parametric integration of earthquake records to evaluate permanent displacements for different slope characteristics and seismic input properties. Several semi-empirical relationships can be obtained for different purposes: obtaining site-specific displacement hazard curves following a fully-probabilistic approach, to assess the seismic risk associated with the slope; providing semi-empirical models within a deterministic framework, where the seismic-induced permanent displacement is compared with threshold values related to different levels of seismic performance; calibrating the seismic coefficient to be used in pseudo-static calculations, where a safety factor against limit conditions is computed. In this paper, semi-empirical relationships are obtained as a result of a parametric integration of an updated version of the Italian strong-motion database, that, in turn, is described and compared to older versions of the database and to well-known ground motion prediction equations. Permanent displacement is expressed as a function of either ground motion parameters, for a given yield seismic coefficient of the slope, or of both ground motion parameters and the seismic coefficient. The first are meant to be used as a tool to develop site-specific displacement hazard curves, while the last can be used to evaluate earthquake-induced slope displacements, as well as to calibrate the seismic coefficient to be used in a pseudo-static analysis. Influence of the vertical component of seismic motion on these semi-empirical relationships is also assessed.


Sign in / Sign up

Export Citation Format

Share Document