scholarly journals On the integral domains characterized by a Bezout Property on intersections of principal ideals

Author(s):  
Lorenzo Guerrieri ◽  
K. Alan Loper
Author(s):  
S. Visweswaran

The rings considered in this paper are commutative with identity. If [Formula: see text] is a subring of a ring [Formula: see text], then we assume that [Formula: see text] contains the identity element of [Formula: see text]. Let [Formula: see text] be a multiplicatively closed subset (m.c. subset) of a ring [Formula: see text]. An increasing sequence of ideals [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-stationary if there exist [Formula: see text] and [Formula: see text] such that [Formula: see text] for all [Formula: see text]. This paper is motivated by the research work [A. Hamed and H. Kim, On integral domains in which every ascending chain on principal ideals is [Formula: see text]-stationary, Bull. Korean Math. Soc. 57(5) (2020) 1215–1229]. Let [Formula: see text] be a m.c. subset of an integral domain [Formula: see text]. We say that [Formula: see text] satisfies [Formula: see text]-ACCP if every increasing sequence of principal ideals of [Formula: see text] is [Formula: see text]-stationary. Let [Formula: see text] be a subring of an integral domain [Formula: see text] and let [Formula: see text] be a m.c. subset of [Formula: see text]. We say that [Formula: see text] is an [Formula: see text]-ACCP pair if [Formula: see text] satisfies [Formula: see text]-ACCP for every subring [Formula: see text] of [Formula: see text] with [Formula: see text]. The aim of this paper is to provide some pairs of domains [Formula: see text] such that [Formula: see text] is an [Formula: see text]-ACCP pair, where [Formula: see text] is a m.c. subset of [Formula: see text].


2011 ◽  
Vol 39 (3) ◽  
pp. 933-941 ◽  
Author(s):  
D. D. Anderson ◽  
Muhammad Zafrullah

1977 ◽  
Vol 80 (3) ◽  
pp. 225-229 ◽  
Author(s):  
Kurt Meyberg ◽  
Birge Zimmermann-Huisgen

2020 ◽  
Vol 32 (5) ◽  
pp. 1109-1129
Author(s):  
Dario Spirito

AbstractWe study decompositions of length functions on integral domains as sums of length functions constructed from overrings. We find a standard representation when the integral domain admits a Jaffard family, when it is Noetherian and when it is a Prüfer domains such that every ideal has only finitely many minimal primes. We also show that there is a natural bijective correspondence between singular length functions and localizing systems.


1988 ◽  
Vol 37 (3) ◽  
pp. 353-366 ◽  
Author(s):  
Valentina Barucci ◽  
David E. Dobbs ◽  
S.B. Mulay

This paper characterises the integral domains R with the property that R/P is integrally closed for each prime ideal P of R. It is shown that Dedekind domains are the only Noetherian domains with this property. On the other hand, each integrally closed going-down domain has this property. Related properties and examples are also studied.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950018 ◽  
Author(s):  
Gyu Whan Chang ◽  
Haleh Hamdi ◽  
Parviz Sahandi

Let [Formula: see text] be a nonzero commutative cancellative monoid (written additively), [Formula: see text] be a [Formula: see text]-graded integral domain with [Formula: see text] for all [Formula: see text], and [Formula: see text]. In this paper, we study graded integral domains in which each nonzero homogeneous [Formula: see text]-ideal (respectively, homogeneous [Formula: see text]-ideal) is divisorial. Among other things, we show that if [Formula: see text] is integrally closed, then [Formula: see text] is a P[Formula: see text]MD in which each nonzero homogeneous [Formula: see text]-ideal is divisorial if and only if each nonzero ideal of [Formula: see text] is divisorial, if and only if each nonzero homogeneous [Formula: see text]-ideal of [Formula: see text] is divisorial.


2001 ◽  
Vol 163 (2) ◽  
pp. 173-192 ◽  
Author(s):  
Marco Fontana ◽  
Evan Houston
Keyword(s):  

Author(s):  
V.P. Shchedryk ◽  

The book is devoted to investigation of arithmetic of the matrix rings over certain classes of commutative finitely generated principal ideals do- mains. We mainly concentrate on constructing of the matrix factorization theory. We reveal a close relationship between the matrix factorization and specific properties of subgroups of the complete linear group and the special normal form of matrices with respect to unilateral equivalence. The properties of matrices over rings of stable range 1.5 are thoroughly studied. The book is intended for experts in the ring theory and linear algebra, senior and post-graduate students.


2021 ◽  
pp. 1-18
Author(s):  
Hwankoo Kim ◽  
Ali Tamoussit

2015 ◽  
Vol 58 (3) ◽  
pp. 449-458 ◽  
Author(s):  
Jason Greene Boynton ◽  
Jim Coykendall

AbstractIt is well known that the factorization properties of a domain are reflected in the structure of its group of divisibility. The main theme of this paper is to introduce a topological/graph-theoretic point of view to the current understanding of factorization in integral domains. We also show that connectedness properties in the graph and topological space give rise to a generalization of atomicity.


Sign in / Sign up

Export Citation Format

Share Document