IC-P-086: Amyloid-β and Hyperphosphorylated TAU Synergy Drives Clinical Progression to Alzheimer’s Disease

2016 ◽  
Vol 12 ◽  
pp. P66-P67
Author(s):  
Tharick A. Pascoal ◽  
Sulantha S. Mathotaarachchi ◽  
Monica Shin ◽  
Andrea Lessa Benedet ◽  
Min Su Kang ◽  
...  
Brain ◽  
2021 ◽  
Author(s):  
Eva Dávila-Bouziguet ◽  
Arnau Casòliba-Melich ◽  
Georgina Targa-Fabra ◽  
Lorena Galera-López ◽  
Andrés Ozaita ◽  
...  

Abstract Alzheimer’s disease comprises amyloid-β and hyperphosphorylated Tau accumulation, imbalanced neuronal activity, aberrant oscillatory rhythms, and cognitive deficits. Non-Demented with Alzheimer’s disease Neuropathology (NDAN) defines a novel clinical entity with amyloid-β and Tau pathologies but preserved cognition. The mechanisms underlying such neuroprotection remain undetermined and animal models of NDAN are currently unavailable. We demonstrate that J20/VLW mice (accumulating amyloid-β and hyperphosphorylated Tau) exhibit preserved hippocampal rhythmic activity and cognition, as opposed to J20 and VLW animals, which show significant alterations. Furthermore, we show that the overexpression of mutant human Tau in coexistence with amyloid-β accumulation renders a particular hyperphosphorylated Tau signature in hippocampal interneurons. The GABAergic septohippocampal pathway, responsible for hippocampal rhythmic activity, is preserved in J20/VLW mice, in contrast to single mutants. Our data highlight J20/VLW mice as a suitable animal model in which to explore the mechanisms driving cognitive preservation in NDAN. Moreover, they suggest that a differential Tau phosphorylation pattern in hippocampal interneurons prevents the loss of GABAergic septohippocampal innervation and alterations in local field potentials, thereby avoiding cognitive deficits.


2018 ◽  
Vol 14 (11) ◽  
pp. 1470-1481 ◽  
Author(s):  
Oskar Hansson ◽  
John Seibyl ◽  
Erik Stomrud ◽  
Henrik Zetterberg ◽  
John Q. Trojanowski ◽  
...  

2019 ◽  
Vol 11 (507) ◽  
pp. eaav6221 ◽  
Author(s):  
Michael Ewers ◽  
Nicolai Franzmeier ◽  
Marc Suárez-Calvet ◽  
Estrella Morenas-Rodriguez ◽  
Miguel Angel Araque Caballero ◽  
...  

Loss of function of TREM2, a key receptor selectively expressed by microglia in the brain, contributes to the development of Alzheimer’s disease (AD). We therefore examined whether soluble TREM2 (sTREM2) concentrations in cerebrospinal fluid (CSF) were associated with reduced rates of cognitive decline and clinical progression in subjects with AD or mild cognitive impairment (MCI). We measured sTREM2 in CSF samples from 385 elderly subjects, including cognitively normal controls, individuals with MCI, and subjects with AD dementia (follow-up period: mean, 4 years; range 1.5 to 11.5 years). In subjects with AD defined by evidence of CSF Aβ1–42 (amyloid β-peptide 1 to 42; A+) and CSF p-tau181 (tau phosphorylated on amino acid residue 181; T+), higher sTREM2 concentrations in CSF at baseline were associated with attenuated decline in memory and cognition. When analyzed in clinical subgroups, an association between higher CSF sTREM2 concentrations and subsequent reduced memory decline was consistently observed in individuals with MCI or AD dementia, who were positive for CSF Aβ1–42 and CSF p-tau181 (A+T+). Regarding clinical progression, a higher ratio of CSF sTREM2 to CSF p-tau181 concentrations predicted slower conversion from cognitively normal to symptomatic stages or from MCI to AD dementia in the subjects who were positive for CSF Aβ1–42 and CSF p-tau181. These results suggest that sTREM2 is associated with attenuated cognitive and clinical decline, a finding with important implications for future clinical trials targeting the innate immune response in AD.


2021 ◽  
Vol 80 (2) ◽  
pp. 521-526
Author(s):  
Joost M. Riphagen ◽  
Maxime van Egroo ◽  
Heidi I.L. Jacobs

The noradrenergic (NE) locus coeruleus (LC) is vulnerable to hyperphosphorylated tau, and dysregulated NE-metabolism is linked to greater tau and disease progression. We investigated whether elevated NE-metabolism alone predicts memory decline or whether concomitant presence of tau and amyloid-β is required. Among 114 memory clinic participants, time trends (max. six years) showed dose-response declines in learning across groups with elevated NE-metabolite 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) with no, one, or two Alzheimer’s disease biomarkers; and no decline in the low MHPG group. Elevated MHPG is required and sufficient to detect learning declines, supporting a pathophysiologic model including the LC-NE system contributing to initial Alzheimer’s disease-related processes.


2017 ◽  
Vol 8 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Marta Bolós ◽  
Juan Ramón Perea ◽  
Jesús Avila

AbstractAlzheimer’s disease (AD) is a neurodegenerative condition characterized by the formation of amyloid-β plaques, aggregated and hyperphosphorylated tau protein, activated microglia and neuronal cell death, ultimately leading to progressive dementia. In this short review, we focus on neuroinflammation in AD. Specifically, we describe the participation of microglia, as well as other factors that may contribute to inflammation, in neurodegeneration.


2014 ◽  
Vol 128 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Markus Mandler ◽  
Lauren Walker ◽  
Radmila Santic ◽  
Peter Hanson ◽  
Ajeet Rijal Upadhaya ◽  
...  

2016 ◽  
Vol 22 (2) ◽  
pp. 306-311 ◽  
Author(s):  
T A Pascoal ◽  
◽  
S Mathotaarachchi ◽  
S Mohades ◽  
A L Benedet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document