Developing a novel large animal model of trauma-induced systemic inflammatory response syndrome

2013 ◽  
Vol 217 (3) ◽  
pp. S57
Author(s):  
Chetan Pasrija ◽  
Pablo G. Sanchez ◽  
Zhongjun J. Wu ◽  
Bartley P. Griffith
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Nalú Navarro-Alvarez ◽  
Beatriz M. M. Gonçalves ◽  
Alec R. Andrews ◽  
David H. Sachs ◽  
Christene A. Huang

Similarities between porcine and human skin make the pig an ideal model for preclinical studies of cutaneous inflammation and wound healing. Complete Freund’s adjuvant (CFA) has been used to induce inflammation and to study inflammatory pain in several animal models. Here, we evaluated the inflammation caused by CFA injected in different layers of skin and subcutaneous (SC) tissue in a large-animal model. The degree of inflammation was evaluated at early and late time points by visual inspection and histopathologic analysis. In addition, the side effects of CFA injections were evaluated based on clinical findings, behavioral changes, physiologic state, and (histo)pathologic lesions. Pigs were injected with CFA at the back of the neck’s skin at different depths. All animals showed histologic signs of inflammation at the injection site. Animals injected SC did not show any signs of pain or distress (loss of appetite, abnormal behavior) and did not require pain medication. Inflammation was followed by measuring the area of induration beneath the skin. Animals injected into the dermis and/or epidermis demonstrated a severe inflammatory response on the skin surface with massive swelling, redness within 12hrs of CFA injection, and severe skin necrosis within a week, preventing accurate induration measurements. In contrast to animals injected SC, animals receiving intradermal and/or intraepidermal injection of CFA showed signs of distress requiring pain medication. Conclusion. SC injection of CFA in swine induces an inflammatory response that can be measured accurately by induration without causing unnecessary discomfort, providing a useful preclinical large-animal model of inflammatory skin disease.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
K. Horst ◽  
D. Eschbach ◽  
R. Pfeifer ◽  
S. Hübenthal ◽  
M. Sassen ◽  
...  

Background. Previous studies showed significant interaction between the local and systemic inflammatory response after severe trauma in small animal models. The purpose of this study was to establish a new combined trauma model in pigs to investigate fracture-associated local inflammation and gain information about the early inflammatory stages after polytrauma.Material and Methods. Combined trauma consisted of tibial fracture, lung contusion, liver laceration, and controlled hemorrhage. Animals were mechanically ventilated and under ICU-monitoring for 48 h. Blood and fracture hematoma samples were collected during the time course of the study. Local and systemic levels of serum cytokines and diverse alarmins were measured by ELISA kit.Results. A statistical significant difference in the systemic serum values of IL-6 and HMGB1 was observed when compared to the sham. Moreover, there was a statistical significant difference in the serum values of the fracture hematoma of IL-6, IL-8, IL-10, and HMGB1 when compared to the systemic inflammatory response. However a decrease of local proinflammatory concentrations was observed while anti-inflammatory mediators increased.Conclusion. Our data showed a time-dependent activation of the local and systemic inflammatory response. Indeed it is the first study focusing on the local and systemic inflammatory response to multiple-trauma in a large animal model.


Author(s):  
Abdullah AlSomali ◽  
Abdullah Mobarki ◽  
Mohammed Almuhanna ◽  
Abdullah Alqahtani ◽  
Ziyad Alhawali ◽  
...  

Analgesia ◽  
1995 ◽  
Vol 1 (4) ◽  
pp. 598-602 ◽  
Author(s):  
L.D. Napier ◽  
Z. Mateo ◽  
D.A. Yoshishige ◽  
B.A. Barron ◽  
J.L. Caffrey

Sign in / Sign up

Export Citation Format

Share Document