Erratum to Mapping of thin sandy aquifers by using high resolution reflection seismics and 2-D electrical tomography

2006 ◽  
Vol 59 (4) ◽  
pp. 345-346 ◽  
Author(s):  
Franjo S˘umanovac
Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Donat Demanet ◽  
François Renardy ◽  
Kris Vanneste ◽  
Denis Jongmans ◽  
Thierry Camelbeeck ◽  
...  

As part of a paleoseismological investigation along the Bree fault scarp (western border of the Roer Graben), various geophysical methods [electrical profiling, electromagnetic (EM) profiling, refraction seismic tests, electrical tomography, ground‐penetrating radar (GPR), and high‐resolution reflection seismic profiles] were used to locate and image an active fault zone in a depth range between a few decimeters to a few tens of meters. These geophysical investigations, in parallel with geomorphological and geological analyses, helped in the decision to locate trench excavations exposing the fault surfaces. The results could then be checked with the observations in four trenches excavated across the scarp. Geophysical methods pointed out anomalies at all sites of the fault position. The contrast of physical properties (electrical resistivity and permittivity, seismic velocity) observed between the two fault blocks is a result of a differences in the lithology of the juxtaposed soil layers and of a change in the water table depth across the fault. Extremely fast techniques like electrical and EM profiling or seismic refraction profiles localized the fault position within an accuracy of a few meters. In a second step, more detailed methods (electrical tomography and GPR) more precisely imaged the fault zone and revealed some structures that were observed in the trenches. Finally, one high‐resolution reflection seismic profile imaged the displacement of the fault at depths as large as 120 m and filled the gap between classical seismic reflection profiles and the shallow geophysical techniques. Like all geophysical surveys, the quality of the data is strongly dependent on the geologic environment and on the contrast of the physical properties between the juxtaposed formations. The combined use of various geophysical techniques is thus recommended for fault mapping, particularly for a preliminary investigation when the geological context is poorly defined.


First Break ◽  
1988 ◽  
Vol 6 (1203) ◽  
Author(s):  
J. Corsmit ◽  
W.H. Versteeg ◽  
J.H. Brouwer ◽  
K. Helbig

Author(s):  
H. Buness ◽  
K. Bram ◽  
G. Druivenga ◽  
S. Grüneberg

Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 177-187 ◽  
Author(s):  
Roberto G. Francese ◽  
Zoltan Hajnal ◽  
Arnfinn Prugger

A near‐surface multifold high‐resolution seismic reflection experiment was conducted in the vicinity of the waste management area of a potash mine in western Canada. A buried channel was identified in the data, and the stratigraphy of the Quaternary infill of this structure was mapped. The spatial extent of several prominent gravel‐sandy aquifers, which represent the hydrogeologic framework of the region, was outlined by the survey. The seismic signatures also established the hydraulic independence of three major aquifers along the survey line. The complex heterogeneous lithology of the surface cover limited effective elastic‐wave generation to surface sources. This geologic framework also caused propagation of strong diverse coherent‐noise patterns which severely degraded reflected signal. The suppression of those overhelming interfering events required the design of noise‐specific filters and their sequential multistep implementations. Results of forward modeling of background geologic information were crucial factors in the design of the data acquisition program and preliminary choices of the processing parameters, and (along with borehole data) were the primary guidance in the geologic interpretation of the final seismic section. Fundamental procedures were developed for mapping of glacial tills in the Western Canadian Basin, techniques that can be applied in other regions with similar near‐surface glacial stratigraphy. The experiment revealed that even closely spaced borehole information could never duplicate the detail of the subsurface images of the seismic data.


Sign in / Sign up

Export Citation Format

Share Document