Balanced horizontal derivative of potential field data to recognize the edges and estimate location parameters of the source

2014 ◽  
Vol 108 ◽  
pp. 12-18 ◽  
Author(s):  
Guoqing Ma ◽  
Cai Liu ◽  
Lili Li
Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. J53-J60 ◽  
Author(s):  
Guoqing Ma

The horizontal gradient ratio has been widely used to enhance the linear features of potential field data. I explore a combination of the horizontal gradient ratio and Euler method to interpret gridded potential field data, called HGR-EUL method. A linear equation derived for the Euler equation and expressing the fields as horizontal gradient ratio can be used to estimate the horizontal location and the depth of the source without any priori information about the nature (structural index) of the source. After obtaining the source location parameters, the nature of the source can be determined. The HGR-EUL method is tested on synthetic magnetic anomalies, and the inversion results show that the method can accurately provide the location parameters for noise-free data, and also obtain reasonable results for noise-corrupted data by applying a low pass filter to smooth the data. I also applied the HGR-EUL method to real magnetic data, and the results are compared with results from the standard Euler deconvolution method. The results obtained by the HGR-EUL method show less unjustified variability and are more useful for geologists.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Luan Thanh Pham ◽  
Ozkan Kafadar ◽  
Erdinc Oksum ◽  
Ahmed M. Eldosouky

Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. IM1-IM9 ◽  
Author(s):  
Nathan Leon Foks ◽  
Richard Krahenbuhl ◽  
Yaoguo Li

Compressive inversion uses computational algorithms that decrease the time and storage needs of a traditional inverse problem. Most compression approaches focus on the model domain, and very few, other than traditional downsampling focus on the data domain for potential-field applications. To further the compression in the data domain, a direct and practical approach to the adaptive downsampling of potential-field data for large inversion problems has been developed. The approach is formulated to significantly reduce the quantity of data in relatively smooth or quiet regions of the data set, while preserving the signal anomalies that contain the relevant target information. Two major benefits arise from this form of compressive inversion. First, because the approach compresses the problem in the data domain, it can be applied immediately without the addition of, or modification to, existing inversion software. Second, as most industry software use some form of model or sensitivity compression, the addition of this adaptive data sampling creates a complete compressive inversion methodology whereby the reduction of computational cost is achieved simultaneously in the model and data domains. We applied the method to a synthetic magnetic data set and two large field magnetic data sets; however, the method is also applicable to other data types. Our results showed that the relevant model information is maintained after inversion despite using 1%–5% of the data.


Sign in / Sign up

Export Citation Format

Share Document