Seismic imaging of simultaneous-source data using constrained least-squares reverse time migration

2015 ◽  
Vol 114 ◽  
pp. 32-35 ◽  
Author(s):  
Yangkang Chen ◽  
Jiang Yuan ◽  
Shaohuan Zu ◽  
Shan Qu ◽  
Shuwei Gan
Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. S11-S20 ◽  
Author(s):  
Zhiguang Xue ◽  
Yangkang Chen ◽  
Sergey Fomel ◽  
Junzhe Sun

Simultaneous-source acquisition improves the efficiency of the seismic data acquisition process. However, direct imaging of simultaneous-source data may introduce crosstalk artifacts in the final image. Likewise, direct imaging of incomplete data avoids the step of data reconstruction, but it can suffer from migration artifacts. We have proposed to incorporate shaping regularization into least-squares reverse time migration (LSRTM) and use it for suppressing interference noise caused by simultaneous-source data or migration artifacts caused by incomplete data. To implement LSRTM, we have applied lowrank one-step reverse time migration and its adjoint iteratively in the conjugate-gradient algorithm to minimize the data misfit. A shaping operator imposing structure constraints on the estimated model was applied at each iteration. We constructed the shaping operator as a structure-enhancing filtering to attenuate migration artifacts and crosstalk noise while preserving structural information. We have carried out numerical tests on synthetic models in which the proposed method exhibited a fast convergence rate and was effective in attenuating migration artifacts and crosstalk noise.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. S199-S216
Author(s):  
Xinru Mu ◽  
Jianping Huang ◽  
Jidong Yang ◽  
Xu Guo ◽  
Yundong Guo

Anisotropy is a common phenomenon in subsurface strata and should be considered in seismic imaging and inversion. Seismic imaging in a vertical transversely isotropic (VTI) medium does not take into account the effects of the tilt angles, which can lead to degraded migrated images in areas with strong anisotropy. To correct such waveform distortion, reduce related image artifacts, and improve migration resolution, a tilted transversely isotropic (TTI) least-squares reverse time migration (LSRTM) method is presented. In the LSRTM, a pure qP-wave equation is used and solved with the finite-difference method. We have analyzed the stability condition for the pure qP-wave equation using the matrix method, which is used to ensure the stability of wave propagation in the TTI medium. Based on this wave equation, we derive a corresponding demigration (Born modeling) and adjoint migration operators to implement TTI LSRTM. Numerical tests on the synthetic data show the advantages of TTI LSRTM over VTI RTM and VTI LSRTM when the recorded data contain strong effects caused by large tilt angles. Our numerical experiments illustrate that the sensitivity of the adopted TTI LSRTM to the migration velocity errors is much higher than that to the anisotropic parameters (including epsilon, delta, and tilted angle parameters), and its sensitivity to the epsilon model and tilt angle is higher than that to the delta model.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xu Hong-Qiao ◽  
Wang Xiao-Yi ◽  
Wang Chen-Yuan ◽  
Zhang Jiang-Jie

Least-squares reverse time migration (LSRTM) is powerful for imaging complex geological structures. Most researches are based on Born modeling operator with the assumption of small perturbation. However, studies have shown that LSRTM based on Kirchhoff approximation performs better; in particular, it generates a more explicit reflected subsurface and fits large offset data well. Moreover, minimizing the difference between predicted and observed data in a least-squares sense leads to an average solution with relatively low quality. This study applies L1-norm regularization to LSRTM (L1-LSRTM) based on Kirchhoff approximation to compensate for the shortcomings of conventional LSRTM, which obtains a better reflectivity image and gets the residual and resolution in balance. Several numerical examples demonstrate that our method can effectively mitigate the deficiencies of conventional LSRTM and provide a higher resolution image profile.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S267-S283 ◽  
Author(s):  
Yangkang Chen ◽  
Min Bai ◽  
Yatong Zhou ◽  
Qingchen Zhang ◽  
Yufeng Wang ◽  
...  

Seismic migration can be formulated as an inverse problem, the model of which can be iteratively inverted via the least-squares migration framework instead of approximated by applying the adjoint operator to the observed data. Least-squares reverse time migration (LSRTM) has attracted more and more attention in modern seismic imaging workflows because of its exceptional performance in obtaining high-resolution true-amplitude seismic images and the fast development of the computational capability of modern computing architecture. However, due to a variety of reasons, e.g., insufficient shot coverage and data sampling, the image from least-squares inversion still contains a large amount of artifacts. This phenomenon results from the ill-posed nature of the inverse problem. In traditional LSRTM, the minimum least-squares energy of the model is used as a constraint to regularize the inverse problem. Considering the residual noise caused by the smoothing operator in traditional LSRTM, we regularize the model using a powerful low-rank decomposition operator, which can better suppress the migration artifacts in the image during iterative inversion. We evaluate in detail the low-rank decomposition operator and the way to apply it along the geologic structure of seismic reflectors. We comprehensively analyze the performance of our algorithm in attenuating crosstalk noise caused by simultaneous source acquisition and migration artifacts caused by insufficient space sampling via two synthetic examples and one field data example. Our results indicate that compared to the conventional smoothing operator, our low-rank decomposition operator can help obtain a cleaner LSRTM image and obtain a slightly better edge-preserving performance.


Sign in / Sign up

Export Citation Format

Share Document