scholarly journals Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization

Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. S11-S20 ◽  
Author(s):  
Zhiguang Xue ◽  
Yangkang Chen ◽  
Sergey Fomel ◽  
Junzhe Sun

Simultaneous-source acquisition improves the efficiency of the seismic data acquisition process. However, direct imaging of simultaneous-source data may introduce crosstalk artifacts in the final image. Likewise, direct imaging of incomplete data avoids the step of data reconstruction, but it can suffer from migration artifacts. We have proposed to incorporate shaping regularization into least-squares reverse time migration (LSRTM) and use it for suppressing interference noise caused by simultaneous-source data or migration artifacts caused by incomplete data. To implement LSRTM, we have applied lowrank one-step reverse time migration and its adjoint iteratively in the conjugate-gradient algorithm to minimize the data misfit. A shaping operator imposing structure constraints on the estimated model was applied at each iteration. We constructed the shaping operator as a structure-enhancing filtering to attenuate migration artifacts and crosstalk noise while preserving structural information. We have carried out numerical tests on synthetic models in which the proposed method exhibited a fast convergence rate and was effective in attenuating migration artifacts and crosstalk noise.

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. S411-S423
Author(s):  
Peng Yong ◽  
Jianping Huang ◽  
Zhenchun Li ◽  
Wenyuan Liao ◽  
Luping Qu

Least-squares reverse time migration (LSRTM), an effective tool for imaging the structures of the earth from seismograms, can be characterized as a linearized waveform inversion problem. We have investigated the performance of three minimization functionals as the [Formula: see text] norm, the hybrid [Formula: see text] norm, and the Wasserstein metric ([Formula: see text] metric) for LSRTM. The [Formula: see text] metric used in this study is based on the dynamic formulation of transport problems, and a primal-dual hybrid gradient algorithm is introduced to efficiently compute the [Formula: see text] metric between two seismograms. One-dimensional signal analysis has demonstrated that the [Formula: see text] metric behaves like the [Formula: see text] norm for two amplitude-varied signals. Unlike the [Formula: see text] norm, the [Formula: see text] metric does not suffer from the differentiability issue for null residuals. Numerical examples of the application of three misfit functions to LSRTM on synthetic data have demonstrated that, compared to the [Formula: see text] norm, the hybrid [Formula: see text] norm and [Formula: see text] metric can accelerate LSRTM and are less sensitive to non-Gaussian noise. For the field data application, the [Formula: see text] metric produces the most reliable imaging results. The hybrid [Formula: see text] norm requires tedious trial-and-error tests for the judicious threshold parameter selection. Hence, the more automatic [Formula: see text] metric is recommended as a robust alternative to the customary [Formula: see text] norm for time-domain LSRTM.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. S405-S416
Author(s):  
Xiaofeng Jia ◽  
Wenyang Chen ◽  
Bin Chen

Reverse time migration (RTM) is a powerful seismic imaging tool that suffers from high computational complexity when dealing with massive data. The simultaneous-shot method can effectively reduce the amount of migration by assembling several sources, although it adds crosstalk noise, which seriously affects the quality of the RTM results. To avoid this problem, we have adopted a time-domain scheme that combines time-delay encoding and amplitude encoding to reduce crosstalk artifacts in simultaneous-source imaging results. This scheme modulates the wavefields of multiple sources to fit the wavefield of a suspended super-virtual shot (SVS), which can eliminate crosstalk artifacts because they are absent in single SVS migration. Numerical examples on a steeply dipping model and the 2D SEG/EAGE salt model show the feasibility of the proposed method. SVS encoding can generate a qualified imaging result and takes less time than plane-wave encoding in the migration process.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. S29-S40 ◽  
Author(s):  
Jizhong Yang ◽  
Yuzhu Liu ◽  
Yunyue Elita Li ◽  
Arthur Cheng ◽  
Liangguo Dong ◽  
...  

Direct imaging of the steeply dipping structures is challenging for conventional reverse time migration (RTM), especially when there are no strong reflectors in the migration velocity model. To address this issue, we have enhanced the imaging of the steeply dipping structures by incorporating the prismatic waves. We formulate the imaging problem in a nonlinear least-squares optimization framework because the prismatic waves cannot be linearly mapped from the model perturbation. Primary and prismatic waves are jointly imaged to provide a single consistent image that includes structures illuminated by both types of waves, avoiding the complexities in scaling and/or interpreting primary and prismatic images separately. A conjugate gradient algorithm is used to iteratively solve the least-squares normal equation. This inversion procedure can become unstable if directly using the recorded data for migration because it is hindered by the crosstalk caused by imaging primary waves with the prismatic imaging operator. Therefore, we isolate the prismatic waves from the recorded data and image them with the prismatic imaging operator. Our scheme only requires a kinematically accurate and smooth migration velocity model, without the need to explicitly embed the strong reflectors in the migration velocity model. Realistic 2D numerical examples demonstrate that our method can resolve the steeply dipping structures much better than conventional least-squares RTM of primary waves.


Sign in / Sign up

Export Citation Format

Share Document