Microseismic event detection and classification based on convolutional neural network

2021 ◽  
pp. 104380
Author(s):  
Lei Liu ◽  
Weiqi Song ◽  
Chao Zeng ◽  
Xiaohui Yang
2019 ◽  
Vol 15 (6) ◽  
pp. 155014771985649 ◽  
Author(s):  
Van Quan Nguyen ◽  
Tien Nguyen Anh ◽  
Hyung-Jeong Yang

We proposed an approach for temporal event detection using deep learning and multi-embedding on a set of text data from social media. First, a convolutional neural network augmented with multiple word-embedding architectures is used as a text classifier for the pre-processing of the input textual data. Second, an event detection model using a recurrent neural network is employed to learn time series data features by extracting temporal information. Recently, convolutional neural networks have been used in natural language processing problems and have obtained excellent results as performing on available embedding vector. In this article, word-embedding features at the embedding layer are combined and fed to convolutional neural network. The proposed method shows no size limitation, supplementation of more embeddings than standard multichannel based approaches, and obtained similar performance (accuracy score) on some benchmark data sets, especially in an imbalanced data set. For event detection, a long short-term memory network is used as a predictor that learns higher level temporal features so as to predict future values. An error distribution estimation model is built to calculate the anomaly score of observation. Events are detected using a window-based method on the anomaly scores.


Author(s):  
Kinjal V. Joshi ◽  
Narendra M. Patel

Automatic abnormal event detection in a surveillance scene is very significant because of more consciousness about public safety. Because of usefulness and complexity, currently, it is an open research area. In this manuscript, the authors have proposed a novel convolutional neural network (CNN) model to detect an abnormal event in a surveillance scene. In this work, CNN is used in two ways. Firstly, it is used for both feature extraction and classification. In a second way, CNN is used for feature extraction, and support vector machine (SVM) is used for classification. Without any pre-processing, the proposed model gives better results compared to state-of-the-art methods. Experiments are carried out on four different publicly available benchmark datasets and one combined dataset, which contains all images of four datasets. The performance is measured by accuracy and area under the ROC (receiver operating characteristic) curve (AUC). The experimental results determine the efficacy of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document