The Utah State University Gauss–Markov Kalman filter of the ionosphere: The effect of slant TEC and electron density profile data on model fidelity

2006 ◽  
Vol 68 (9) ◽  
pp. 947-958 ◽  
Author(s):  
D.C. Thompson ◽  
L. Scherliess ◽  
J.J. Sojka ◽  
R.W. Schunk
1981 ◽  
Vol 64 (11) ◽  
pp. 68-74
Author(s):  
Isamu Nagano ◽  
Masayoshi Mambo ◽  
Tetsuo Fukami ◽  
Koji Namba ◽  
Iwane Kimura

2021 ◽  
Vol 9 ◽  
Author(s):  
M. Turner ◽  
A. J. Gonsalves ◽  
S. S. Bulanov ◽  
C. Benedetti ◽  
N. A. Bobrova ◽  
...  

Abstract We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650 $\mathrm{\mu} \mathrm{m}$ to 2 mm and lengths of 9 to 40 cm. To the best of the authors’ knowledge, 40 cm is the longest discharge capillary plasma waveguide to date. This length is important for $\ge$ 10 GeV electron energy gain in a single laser-driven plasma wakefield acceleration stage. Evaluation of waveguide parameter variations showed that their focusing strength was stable and reproducible to $<0.2$ % and their average on-axis plasma electron density to $<1$ %. These variations explain only a small fraction of laser-driven plasma wakefield acceleration electron bunch variations observed in experiments to date. Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and is in excellent agreement with magnetohydrodynamic simulation results. We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel. However, they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size.


2021 ◽  
Vol 28 (5) ◽  
pp. 052510
Author(s):  
X. R. Zhang ◽  
J. Q. Dong ◽  
H. R. Du ◽  
J. Y. Liu ◽  
Y. Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document