plasma wakefield
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 78)

H-INDEX

36
(FIVE YEARS 6)

Author(s):  
Zhi Yao ◽  
Revathi Jambunathan ◽  
Yadong Zeng ◽  
Andrew Nonaka

We present a high-performance coupled electrodynamics–micromagnetics solver for full physical modeling of signals in microelectronic circuitry. The overall strategy couples a finite-difference time-domain approach for Maxwell’s equations to a magnetization model described by the Landau–Lifshitz–Gilbert equation. The algorithm is implemented in the Exascale Computing Project software framework, AMReX, which provides effective scalability on manycore and GPU-based supercomputing architectures. Furthermore, the code leverages ongoing developments of the Exascale Application Code, WarpX, which is primarily being developed for plasma wakefield accelerator modeling. Our temporal coupling scheme provides second-order accuracy in space and time by combining the integration steps for the magnetic field and magnetization into an iterative sub-step that includes a trapezoidal temporal discretization for the magnetization. The performance of the algorithm is demonstrated by the excellent scaling results on NERSC multicore and GPU systems, with a significant (59×) speedup on the GPU using a node-by-node comparison. We demonstrate the utility of our code by performing simulations of an electromagnetic waveguide and a magnetically tunable filter.


Author(s):  
Michael Stumpf ◽  
Matthias Melchger ◽  
Severin Georg Montag ◽  
Georg Pretzler

Abstract We present an optical setup for well-defined ionization inside a plasma such that precisely controlled spots of high electron density can be generated. We propose to use the setup for Trojan Horse Injection (or Plasma Photocathode Emission) where a collinear laser beam is needed to release electrons inside a plasma wakefield. The reflection-based setup allows a suitable manipulation of the laser near field without disturbing the spectral phase of the laser pulses. A required ionization state and volume can be reached by tuning the beam size, pulse duration and pulse energy. The ionization simulations enable a prediction of the ionization spot and are in good agreement with dedicated experiments which measured the number of electrons created during the laser-gas interaction.


Author(s):  
Vadim Khudiakov ◽  
Konstantin V Lotov ◽  
Mike Downer

Abstract In plasma wakefield accelerators, the wave excited in the plasma eventually breaks and leaves behind slowly changing fields and currents that perturb the ion density background. We study this process numerically using the example of a FACET experiment where the wave is excited by an electron bunch in the bubble regime in a radially bounded plasma. Four physical effects underlie the dynamics of ions: (1) attraction of ions toward the axis by the fields of the driver and the wave, resulting in formation of a density peak, (2) generation of ion-acoustic solitons following the decay of the density peak, (3) positive plasma charging after wave breaking, leading to acceleration of some ions in the radial direction, and (4) plasma pinching by the current generated during the wavebreaking. Interplay of these effects result in formation of various radial density profiles, which are difficult to produce in any other way.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
D. Ullmann ◽  
P. Scherkl ◽  
A. Knetsch ◽  
T. Heinemann ◽  
A. Sutherland ◽  
...  

2021 ◽  
pp. 52-56
Author(s):  
V.I. Maslov ◽  
R.T. Ovsiannikov ◽  
D.S. Bondar ◽  
I.P. Levchuk ◽  
I.N. Onishchenko

Plasma wakefield acceleration promises compact sources of high-brightness relativistic electron and positron beams. Applications (particle colliders and free-electron lasers) of plasma wakefield accelerators demand low ener-gy spread beams and high-efficiency operation. Achieving both requires plateau formation on both the accelerating field for witness-bunch and the decelerating fields for driver-bunches by controlled beam loading of the plasma wave with careful tailored current profiles. We demonstrate by numerical simulation by 2.5D PIC code LCODE such optimal beam loading in a linear and blowout electron-driven plasma accelerator with RF generated low and high beam charge and high beam quality.


Author(s):  
Konstantin V Lotov ◽  
Petr Tuev

Abstract A new regime of proton-driven plasma wakefield acceleration is discovered, in which the plasma nonlinearity increases the phase velocity of the excited wave compared to that of the protons. If the beam charge is much larger than minimally necessary to excite a nonlinear wave, there is sufficient freedom in choosing the longitudinal plasma density profile to make the wave speed close to the speed of light. This allows electrons or positrons to be accelerated to about 200 GeV with a 400 GeV proton driver.


Sign in / Sign up

Export Citation Format

Share Document