ionospheric electron density
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 31)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Huijun Le ◽  
Tingwei Han ◽  
Libo Liu ◽  
Yiding Chen ◽  
Hui Zhang

2021 ◽  
Author(s):  
Huijun Le ◽  
Tingwei Han ◽  
Libo Liu ◽  
Yiding Chen ◽  
Hui Zhang

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3086
Author(s):  
Zhen Guo ◽  
Zengfu Wang ◽  
Yuhang Hao ◽  
Hua Lan ◽  
Quan Pan

In the target localization of skywave over-the-horizon radar (OTHR), the error of the ionospheric parameters is one main error source. To reduce the error of ionospheric parameters, a method using both the information of reference sources (e.g., terrain features, ADS-B) in ground coordinates and the corresponding OTHR measurements is proposed to estimate the ionospheric parameters. Describing the ionospheric electron density profile by the quasi-parabolic model, the estimation of the ionospheric parameters is formulated as an inverse problem, and is solved by a Markov chain Monte Carlo method due to the complicated ray path equations. Simulation results show that, comparing with using the a prior value of the ionospheric parameters, using the estimated ionospheric parameters based on four airliners in OTHR coordinate registration process, the ground range RMSE of interested targets is reduced from 2.86 to 1.13 km and the corresponding improvement ratio is up to 60.39%. This illustrates that the proposed method using reference sources is able to significantly improve the accuracy of target localization.


Author(s):  
S. Chakraborty ◽  
L. Qian ◽  
J. M. Ruohoniemi ◽  
J. B. H. Baker ◽  
J. M. Mclnerney ◽  
...  

2021 ◽  
Author(s):  
Bruno Nava ◽  
Yenca Migoya-Orue ◽  
Anton Kashcheyev ◽  
Beatriz Sánchez-Cano ◽  
Olivier Witasse ◽  
...  

<p>Radio Occultation (RO) is a very powerful technique to probe a planetary atmosphere, in providing vertical density profiles of the neutral atmosphere and ionosphere. The standard method uses a radio link between a spacecraft and an Earth ground station. Nevertheless, the possibility to obtain information about the Martian atmosphere with mutual RO events, using data from NASA Mars Odyssey and Mars Reconnaissance Orbiters (MRO), has been demonstrated by Ao et al. (2015).<br />Taking advantage of two European spacecraft in orbit around Mars, the European Space Agency is currently preparing experiments of mutual RO between Mars Express (MEX) and the ExoMars Trace Gas Orbiter (TGO). In preparation of MEX and TGO data inversion and analysis, a simulation-based strategy has been adopted and an algorithm able to retrieve vertical electron density profiles from Doppler shift measurements has been implemented and validated. Subsequently, in order to test the mentioned algorithm with experimental data, the same three RO events considered in the paper by Ao et al. (2015) have been processed. In particular, for each RO event, having the information about the satellites’ orbit, the (excess) Doppler shift values corresponding to the Mars Odyssey-MRO ray-paths have been converted to bending angles as a function of impact parameter. Then, assuming a spherical symmetry (Fjeldbo et al., 1971) for the ionosphere electron density, the bending angles have been transformed (through Abel integral) to a vertical refractivity profile, which, in turn, has been converted to an ionospheric electron density profile.<br />In this work, the results obtained by the application of the mentioned inversion algorithm to experimental data will be presented, with particular focus on the retrieval of the ionospheric electron density profiles.</p> <p><strong>References</strong></p> <p>Ao, C. O., C. D. Edwards Jr., D. S. Kahan, X. Pi, S. W. Asmar, and A. J. Mannucci (2015), A first demonstration of Mars crosslink occultation measurements, Radio Sci., 50, 997–1007, doi:10.1002/2015RS005750.</p> <p>Fjeldbo, G., A. J. Kliore, and V. R. Eshleman (1971), The neutral atmosphere of Venus as studied with the Mariner V radio occultation<br />experiments, Astron. J., 76, 123–140.</p>


2021 ◽  
Author(s):  
Isabel Fernandez-Gomez ◽  
Andreas Goss ◽  
Michael Schmidt ◽  
Mona Kosary ◽  
Timothy Kodikara ◽  
...  

<p>The response of the Ionosphere - Thermosphere (IT) system to severe storm conditions is of great importance to fully understand its coupling mechanisms. The challenge to represent the governing processes of the upper atmosphere depends, to a large extent, on an accurate representation of the true state of the IT system, that we obtain by assimilating relevant measurements into physics-based models. Thermospheric Mass Density (TMD) is the summation of total neutral mass within the atmosphere that is derived from accelerometer measurements of satellite missions such as CHAMP, GOCE, GRACE(-FO) and Swarm. TMD estimates can be assimilated into physics-based models to modify the state of the processes within the IT system. Previous studies have shown that this modification can potentially improve the simulations and predictions of the ionospheric electron density. These differences could also be interpreted as an indicator of the ionosphere-thermosphere interaction. The research presented here, aims to quantify the impact of data satellite based TMD assimilation on numerical model results.</p><p>Subject of this study is the Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe) physics-based model in combination with the recently developed Thermosphere-Ionosphere Data Assimilation (TIDA) scheme. TMD estimates from the ESA’s Swarm mission are assimilated in CTIPe-TIDA during the 16 to the 20 of March 2015. This period was characterized by a strong geomagnetic storm that triggered significant changes in the IT system, the so-called St. Patrick day storm 2015. To assess the changes in the IT system during storm conditions due to data assimilation, the model results from assimilating SWARM mass density normalized to the altitude of 400 km are compared to independent thermospheric estimates like GRACE-TMDS. In order to evaluate the impact of the data assimilation on the ionosphere, the corresponding output of electron density is compared to high-quality electron density estimates derived from data-driven model of the DGFI-TUM.</p>


2021 ◽  
Author(s):  
Shibaji Chakraborty ◽  
Liying Qian ◽  
J. Michael Ruohoniemi ◽  
Joseph Baker ◽  
Joseph McInerney

<p>Trans–ionospheric high frequency (HF) signals experience a strong attenuation following a solar flare, commonly referred to as Short–Wave Fadeout (SWF). Although solar flare-driven HF absorption is a well-known impact of SWF, the occurrence of a frequency shift on radio wave signal traversing the lower ionosphere in the early stages of SWF, also known as "Doppler Flash", is newly reported and not well understood. Some prior investigations have suggested two possible sources that might contribute to the manifestation of Doppler Flash: first,  enhancements of plasma density in the D and lower E regions; second, the lowering of the reflection point in the F region. Observations and modeling evidence regarding the manifestation and evolution of Doppler Flash in the ionosphere are limited. This study seeks to advance our understanding of the initial impacts of solar flare-driven SWF. We use WACCM-X to estimate flare-driven enhanced ionization in D, E, and F-regions and a ray-tracing code (Pharlap) to simulate a 1-hop HF communication through the modified ionosphere. Once the ray traveling path has been identified, the model estimates the Doppler frequency shift along the ray path. Finally, the outputs are validated against observations of SWF made with SuperDARN HF radars. We find that changes in the refractive index due to the F-region's plasma density enhancement is the primary cause of Doppler Flash.</p>


Sign in / Sign up

Export Citation Format

Share Document