scholarly journals Word embeddings and recurrent neural networks based on Long-Short Term Memory nodes in supervised biomedical word sense disambiguation

2017 ◽  
Vol 73 ◽  
pp. 137-147 ◽  
Author(s):  
Antonio Jimeno Yepes
Author(s):  
Ali Saeed ◽  
Rao Muhammad Adeel Nawab ◽  
Mark Stevenson

Word Sense Disambiguation (WSD), the process of automatically identifying the correct meaning of a word used in a given context, is a significant challenge in Natural Language Processing. A range of approaches to the problem has been explored by the research community. The majority of these efforts has focused on a relatively small set of languages, particularly English. Research on WSD for South Asian languages, particularly Urdu, is still in its infancy. In recent years, deep learning methods have proved to be extremely successful for a range of Natural Language Processing tasks. The main aim of this study is to apply, evaluate, and compare a range of deep learning methods approaches to Urdu WSD (both Lexical Sample and All-Words) including Simple Recurrent Neural Networks, Long-Short Term Memory, Gated Recurrent Units, Bidirectional Long-Short Term Memory, and Ensemble Learning. The evaluation was carried out on two benchmark corpora: (1) the ULS-WSD-18 corpus and (2) the UAW-WSD-18 corpus. Results (Accuracy = 63.25% and F1-Measure = 0.49) show that a deep learning approach outperforms previously reported results for the Urdu All-Words WSD task, whereas performance using deep learning approaches (Accuracy = 72.63% and F1-Measure = 0.60) are low in comparison to previously reported for the Urdu Lexical Sample task.


2019 ◽  
Vol 20 (S16) ◽  
Author(s):  
Canlin Zhang ◽  
Daniel Biś ◽  
Xiuwen Liu ◽  
Zhe He

Abstract Background In recent years, deep learning methods have been applied to many natural language processing tasks to achieve state-of-the-art performance. However, in the biomedical domain, they have not out-performed supervised word sense disambiguation (WSD) methods based on support vector machines or random forests, possibly due to inherent similarities of medical word senses. Results In this paper, we propose two deep-learning-based models for supervised WSD: a model based on bi-directional long short-term memory (BiLSTM) network, and an attention model based on self-attention architecture. Our result shows that the BiLSTM neural network model with a suitable upper layer structure performs even better than the existing state-of-the-art models on the MSH WSD dataset, while our attention model was 3 or 4 times faster than our BiLSTM model with good accuracy. In addition, we trained “universal” models in order to disambiguate all ambiguous words together. That is, we concatenate the embedding of the target ambiguous word to the max-pooled vector in the universal models, acting as a “hint”. The result shows that our universal BiLSTM neural network model yielded about 90 percent accuracy. Conclusion Deep contextual models based on sequential information processing methods are able to capture the relative contextual information from pre-trained input word embeddings, in order to provide state-of-the-art results for supervised biomedical WSD tasks.


Sign in / Sign up

Export Citation Format

Share Document