Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone – a feasibility study

2014 ◽  
Vol 47 (16) ◽  
pp. 3830-3836 ◽  
Author(s):  
Petr Marcián ◽  
Libor Borák ◽  
Jiří Valášek ◽  
Jozef Kaiser ◽  
Zdeněk Florian ◽  
...  
2015 ◽  
Vol 1099 ◽  
pp. 129-139
Author(s):  
A. Belarbi ◽  
B. Mansouri ◽  
G. Mehdi ◽  
Mohamed Belhouari ◽  
Zitouni Azari

This paper focused on optimal stress distribution in the mandibular bone surrounding a dental implant and devoted to the development of a modified Osteoplant implant type in order to minimize stress concentration in the bone/implant interface. This study investigated two elastomeric stress barriers incorporated into the dental implant using 3-D finite element analysis. Overall, this proposed implant provoked lower bone/implant interface stresses due to the effect of the elastomers as stress absorbers.Key Words: Dental implant, stress absorber, elastomer, finite element method


2002 ◽  
Vol 11 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Chatchai Kunavisarut ◽  
Lisa A. Lang ◽  
Brian R. Stoner ◽  
David A. Felton

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoning Kang ◽  
Yiming Li ◽  
Yixi Wang ◽  
Yao Zhang ◽  
Dongsheng Yu ◽  
...  

Occlusal trauma caused by improper bite forces owing to the lack of periodontal membrane may lead to bone resorption, which is still a problem for the success of dental implant. In our study, to avoid occlusal trauma, we put forward a hypothesis that a microelectromechanical system (MEMS) pressure sensor is settled on an implant abutment to track stress on the abutment and predict the stress on alveolar bone for controlling bite forces in real time. Loading forces of different magnitudes (0 N–100 N) and angles (0–90°) were applied to the crown of the dental implant of the left central incisor in a maxillary model. The stress distribution on the abutment and alveolar bone were analyzed using a three-dimensional finite element analysis (3D FEA). Then, the quantitative relation between them was derived using Origin 2017 software. The results show that the relation between the loading forces and the stresses on the alveolar bone and abutment could be described as 3D surface equations associated with the sine function. The appropriate range of stress on the implant abutment is 1.5 MPa–8.66 MPa, and the acceptable loading force range on the dental implant of the left maxillary central incisor is approximately 6 N–86 N. These results could be used as a reference for the layout of MEMS pressure sensors to maintain alveolar bone dynamic remodeling balance.


Sign in / Sign up

Export Citation Format

Share Document