scholarly journals Influence of Occlusal Forces on Stress Distribution on Preloaded Dental Implant Abutment Screws: A Finite Element Analysis Study

Author(s):  
CL Satish Babu ◽  
P Rohit ◽  
RH Deepa ◽  
KR Jnandev ◽  
Mohammed Fayaz Pasha
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoning Kang ◽  
Yiming Li ◽  
Yixi Wang ◽  
Yao Zhang ◽  
Dongsheng Yu ◽  
...  

Occlusal trauma caused by improper bite forces owing to the lack of periodontal membrane may lead to bone resorption, which is still a problem for the success of dental implant. In our study, to avoid occlusal trauma, we put forward a hypothesis that a microelectromechanical system (MEMS) pressure sensor is settled on an implant abutment to track stress on the abutment and predict the stress on alveolar bone for controlling bite forces in real time. Loading forces of different magnitudes (0 N–100 N) and angles (0–90°) were applied to the crown of the dental implant of the left central incisor in a maxillary model. The stress distribution on the abutment and alveolar bone were analyzed using a three-dimensional finite element analysis (3D FEA). Then, the quantitative relation between them was derived using Origin 2017 software. The results show that the relation between the loading forces and the stresses on the alveolar bone and abutment could be described as 3D surface equations associated with the sine function. The appropriate range of stress on the implant abutment is 1.5 MPa–8.66 MPa, and the acceptable loading force range on the dental implant of the left maxillary central incisor is approximately 6 N–86 N. These results could be used as a reference for the layout of MEMS pressure sensors to maintain alveolar bone dynamic remodeling balance.


2015 ◽  
Vol 41 (6) ◽  
pp. 646-651 ◽  
Author(s):  
Hakimeh Siadat ◽  
Shervin Hashemzadeh ◽  
Allahyar Geramy ◽  
Seyed Hossein Bassir ◽  
Marzieh Alikhasi

There are some anatomical restrictions in which implants are not possible to be inserted in their conventional configuration. Offset placement of implants in relation to the prosthetic unit could be a treatment solution. The aim of this study was to evaluate the effect of the offset placement of implant-supported prosthesis on the stress distribution around a dental implant using 3D finite element analysis. 3D finite element models of implant placement in the position of a mandibular molar with 4 configurations (0, 0.5, 1, 1.5 mm offset) were created in order to investigate resultant stress/strain distribution. A vertical load of 100 N was applied on the center of the crown of the models. The least stress in peri-implant tissue was found in in-line configuration (0 mm offset). Stress concentration in the peri-implant tissue increased by increasing the amount of offset placement. Maximum stress concentration in all models was detected at the neck of the implant. It can be concluded that the offset placement of a single dental implant does not offer biomechanical advantages regarding reducing stress concentration over the in-line implant configuration. It is suggested that the amount of offset should be as minimum as possible.


2013 ◽  
Vol 5 (2) ◽  
pp. 187 ◽  
Author(s):  
Seung-Ryong Ha ◽  
Sung-Hun Kim ◽  
Jung-Suk Han ◽  
Seung-Hyun Yoo ◽  
Se-Chul Jeong ◽  
...  

2018 ◽  
Vol 119 (5) ◽  
pp. 791-796 ◽  
Author(s):  
Camilla F. Amaral ◽  
Rafael S. Gomes ◽  
Renata C.M. Rodrigues Garcia ◽  
Altair A. Del Bel Cury

Sign in / Sign up

Export Citation Format

Share Document