implant abutment
Recently Published Documents


TOTAL DOCUMENTS

674
(FIVE YEARS 206)

H-INDEX

38
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 620
Author(s):  
Yousef Jiries ◽  
Tamar Brosh ◽  
Shlomo Matalon ◽  
Vladimir Perlis ◽  
Zeev Ormianer

Aim: We assess the accuracy of torque controllers after several aging processes and the bacterial leakage on Implant-Abutment complexes (IAC).Methods: A total of 12 spring-type and 12 friction-type torque controllers and 48 IAC (24 conical and 24 hexagonal connections) were evaluated. Chemical, mechanical, temperature, and pressure-aging methods were applied individually to replicate clinical use. Torque controller accuracy was analyzed before and after aging using a calibrated gauge. To assess bacterial leakage, the IAC were suspended in a bacterial medium for 24 h. Direct Contact Test (DCT) and Polymerase Chain Reaction Test (RT-PCR) analyzed the infiltration of F. nucleatum and P. gingivalis into the IAC micro-gap. Results: A significant decrease in torque after 10 days of aging was found. The spring-type torque controller was affected the most, regardless of the aging method (P < 0.05). PCR results indicated that all groups exhibited significantly more bacterial leakage, regardless of the method used (P < 0.05). The conical IAC demonstrated more bacterial leakage of P. gingivalis compared with the hexagonal IAC (P = 0.07). DCT found bacterial growth in the IAC only before aging and was not identified after aging. Conclusion: Aging affects torque accuracy. A reduction in force was noticed after 10 days. The conical IAC exhibits more bacterial leakage, although this was not statistically significant.


Author(s):  
Kevin George Varghese ◽  
Nirmal Kurian ◽  
Nitasha Gandhi ◽  
Jemin Elizabeth Mathew
Keyword(s):  

Author(s):  
Douglas Albert Deporter ◽  
Vahid Esfahanian ◽  
Armin khosravi ◽  
Mohammad Ketabi

Platform-switching reduces peri-implant marginal bone loss (MBL), and the aim of this study was to compare the effect of platform-switching on stress within crestal bone using different implant-abutment mis-matches (0.65 and 1mm) under two different vertical loads (30 N vs 200 N) for implants placed in posterior jaw sites. 3-D modeling software was used for an implant of 4.5mm diameter and 13mm length. Molars were modeled using CT images of bone density in human maxilla (D3 bone) and mandible (D2 bone). Collected data were analyzed using CATIA software. In posterior mandible, stress of 30 N force with platform mis-matches of 0.65 or 1mm were 2.920 and 2.440 MPa respectively. Using 200 N force, values increased to 19.44 and 16.30 MPa. In posterior maxilla and 30 N force, stresses with mis-matches of 0.65 and 1mm were 3.77 and 3.18 MPa respectively increasing to 25.14 & 20.17 with 200 N force. The effect can be predicted to be greatest as the mis-match increases with implants placed into lower quality bone (posterior maxilla with D3 quality).


Author(s):  
Saurabh Jain

The aim of this systematic review is to evaluate the effectiveness of different materials used for sealing dental implant abutment screw access channel (ASAC), in preventing microleakage. As per the searched indexed English literature, this study is the first review of its kind. Indexed English literature published up to 20 th February 2021 was systematically searched on relevant electronic data bases. The recommendations specified by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) were applied for constructing framework, and reporting the current review. The focused PICO question was: “Which material (C) is more effective in sealing (I) implant ASAC (P) in terms of causing minimal microbial leakage (O)”. Quality of articles was assessed with modified CONSORT scale for in vitro studies. Five in vitro studies were selected for qualitative analysis after final stage screening. Modified CONSORT scale suggested that out of the five selected studies, one each was of low and high quality, whereas three studies were of moderate quality. Included studies had contrasting results related to the efficacy these materials as sealants in ASAC. Sealing capacity against microleakage should be considered as one of the important criteria while selecting the material to fill implant ASAC. Definitive conclusions asserting superiority of a single material over others are difficult to draw, due to non-homogeneity in study design of the included papers. More studies should be conducted in the near future to investigate the efficacy of various combination of materials in preventing micro leakage.


Author(s):  
Ahmed Said Rozeik ◽  
Mohamed Sad Chaar ◽  
Sandra Sindt ◽  
Sebastian Wille ◽  
Christine Selhuber-Unkel ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bowen Ma ◽  
Xinxin Yue ◽  
Yujie Sun ◽  
Lingyan Peng ◽  
Wei Geng

Abstract Background To compare the accuracy of photogrammetry, intraoral scanning and conventional impression techniques for complete-arch implant rehabilitation. Methods A master cast containing 6 implant abutment replicas was fabricated. Group PG: digital impressions were taken 10 times using a photogrammetry system; Group IOS: intraoral scanning was performed to fabricate 10 digital impressions; Group CNV: splinted open-tray impression technique was used to fabricate 10 definitive casts. The master cast and conventional definitive casts were digitized with a laboratory reference scanner. For all STL files obtained, scan bodies were converted to implant abutment replicas using a digital library. The accuracy of a digitizer was defined by 2 main parameters, trueness and precision. "Trueness" was used to describe the deviation between test files and reference file, and "precision" was used to describe the closeness between test files. Then, the trueness and precision of three impression techniques were evaluated and statistically compared (α = 0.05). Results The median trueness was 24.45, 43.45 and 28.70 μm for group PG, IOS and CNV; Group PG gave more accurate trueness than group IOS (P < 0.001) and group CNV (P = 0.033), group CNV showed more accurate trueness than group IOS (P = 0.033). The median precision was 2.00, 36.00 and 29.40 μm for group PG, IOS and CNV; Group PG gave more accurate precision than group IOS (P < 0.001) and group CNV (P < 0.001), group CNV showed more accurate precision than IOS (P = 0.002). Conclusions For complete-arch implant rehabilitation, the photogrammetry system showed the best accuracy of all the impression techniques evaluated, followed by the conventional impression technique, and the intraoral scanner provided the least accuracy.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6832
Author(s):  
Mahnaz Arshad ◽  
Sina Khayat Zadeh ◽  
Mohammad Atai ◽  
Gholamreza Shirani ◽  
Georgios E. Romanos ◽  
...  

The aim of this study was to assess the effect of application of a recently developed bio-adhesive (Impladhesive) to abutment screw threads on the removal torque value and rotational misfit at the implant–abutment junction. This in vitro study evaluated 20 implant fixtures and 20 straight abutments. Specimens were randomly divided into two groups (n = 10) with/without adhesive application. In the adhesive group, the abutment was dipped in Impladhesive before torquing. In the control group, the abutment was torqued conventionally without adhesive application. The removal torque value was recorded after completion of the cyclic loading of 500,000 cycles with 2 Hz frequency and 75 N load. Rotational misfit was recorded using a video measuring machine. After applying the torque, the change in the bisector angle on the abutment hex was recorded for each implant. The biocompatibility of Impladhesive was evaluated using a MTT cell vitality assay. Normal distribution of data was assessed using the Kolmogorov–Smirnov test. Data were analyzed using a t-test and Pearson’s correlation coefficient The application of Impladhesive at the implant–abutment interface resulted in significantly greater mean removal torque value compared to the control group (p = 0.008). In addition, the mean rotational misfit at the implant–abutment interface was significantly lower in the use of Impladhesive compared to the control group (p = 0.001). In addition, the cell vitality was found to be greater than 80% at all evaluated time points. It can be concluded that the application of Impladhesive on the abutment screw significantly decreased rotational misfit and increased the removal torque value. Future studies are needed to evaluate the efficacy of this bio-adhesive an in vivo setting.


Sign in / Sign up

Export Citation Format

Share Document